Math 33A
Linear Algebra and Applications
Discussion 9

Problem 1.

Consider the $n \times n$ matrix

$$
J_{n}(k)=\left[\begin{array}{cccccc}
k & 1 & 0 & \cdots & 0 & 0 \\
0 & k & 1 & \cdots & 0 & 0 \\
0 & 0 & k & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & k & 1 \\
0 & 0 & 0 & \cdots & 0 & k
\end{array}\right]
$$

(with all k 's on the diagonal and 1's directly above), where k is an arbitrary constant. Find the eigenvalue(s) of $J_{n}(k)$, and determine their algebraic and geometric multiplicities.

Solution: Since $J_{n}(k)$ is upper triangular, its eigenvalues are its diagonal entries, so it has k as its single eigenvalue, with algebraic multiplicity n. Since

$$
E_{k}=\operatorname{ker}\left(J_{n}(k)-k I_{n}\right)=\operatorname{ker}\left(\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left(\overrightarrow{e_{1}}\right)
$$

then $\operatorname{dim}\left(E_{k}\right)=1$, so the geometric multiplicity of k is 1 .

Problem 2(夫).

Are the following matrices similar?

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Solution: No, since $A^{2}=0$ but $B^{2} \neq 0$. If A was similar to B, then we would have an invertible matrix S satisfying $B=S^{-1} A S$, and thus $0 \neq B^{2}=S^{-1} A^{2} S=0$ gives a contradiction.

Problem 3.

Consider a nonzero 3×3 matrix A such that $A^{2}=0$.
(a) Show that the image of A is a subspace of the kernel of A.
(b) Find the dimensions of the image and kernel of A.
(c) Pick a nonzero vector v_{1} in the image of A, and write $\overrightarrow{v_{1}}=A \overrightarrow{v_{2}}$ for some $\overrightarrow{v_{2}}$ in \mathbb{R}^{3}. Let $\overrightarrow{v_{3}}$ be a vector in the kernel of A that fails to be a scalar multiple of $\overrightarrow{v_{1}}$. Show that $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is a basis of \mathbb{R}^{3}.
(d) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to basis \mathfrak{B}.

Solution:

(a) Let $\vec{v} \in \operatorname{im}(A)$, so that there is a vector $\vec{w} \in \mathbb{R}^{3}$ with $\vec{v}=A \vec{w}$. Now $A \vec{v}=$ $A(A \vec{w})=A^{2} \vec{w}=0 \vec{w}=\overrightarrow{0}$, so $\vec{v} \in \operatorname{ker}(A)$. Thus $\operatorname{im}(A) \subset \operatorname{ker}(A)$.
(b) By the above, $\operatorname{dim}(\operatorname{im}(A)) \leq \operatorname{dim}(\operatorname{ker}(A))$. Since A is non zero, then we have at least one non zero vector in the image of A, so $\operatorname{dim}(\operatorname{im}(A)) \geq 1$. By the rank nullity Theorem we have $\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=3$. Thus since the dimensions are integers, the only possibility is $\operatorname{dim}(\operatorname{im}(A))=1$ and $\operatorname{dim}(\operatorname{ker}(A))=2$.
(c) We have three non zero vectors, so to prove that they are a basis of \mathbb{R}^{3} it is enough to prove that their are linearly independent. Suppose we have a relation $c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}$ for some real scalars c_{1}, c_{2}, c_{3}. Applying A to both terms of the equality we obtain $\overrightarrow{0}=c_{2} A \overrightarrow{v_{2}}=c_{2} \overrightarrow{v_{1}}$ so $c_{2}=0$, using that c_{2}, c_{3} are in $\operatorname{ker}(A)$. Thus we have $c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}$. Since $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$ are linearly independent by construction, we have $c_{2}=c_{3}=0$. Hence $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are linearly independent.
(d) We have

$$
B=\left[\begin{array}{lll}
\left.A\left(\overrightarrow{v_{1}}\right)\right]_{\mathfrak{B}} & {\left[A\left(\overrightarrow{v_{2}}\right)\right]_{\mathfrak{B}}} & \left.\left[A\left(\overrightarrow{v_{3}}\right)\right]_{\mathfrak{B}}\right]=\left[\begin{array}{lll}
{[\overrightarrow{0}]_{\mathfrak{B}}} & {\left[\overrightarrow{v_{1}}\right]_{\mathfrak{B}}} & {[\overrightarrow{0}]_{\mathfrak{B}}}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ~ . ~
\end{array}\right.
$$

Problem 4.

If A and B are two nonzero 3×3 matrices such that $A^{2}=B^{2}=0$, is A necessarily similar to B ?

Solution: Yes. Using the previous problem, we can find a basis \mathfrak{A} of \mathbb{R}^{3} such that A is similar to $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and we can also find a basis \mathfrak{B} of \mathbb{R}^{3} such that B is similar to $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Thus, since A and B are both similar to the same matrix, they are similar to each other.

Problem 5.

For the matrix

$$
A=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]
$$

find an invertible matrix S such that

$$
S^{-1} A S=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: Note that $A^{2}=0$, so we can use the method given above. We know that the vector $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in the image of A, since it is the first column of A. Thus the way we obtain it is multiplying A by the first vector of the standard basis, namely $\overrightarrow{v_{1}}=A \overrightarrow{e_{1}}$, so we set $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. For our last element of the basis, we need a vector in the kernel of A that is not a scalar multiple of $\overrightarrow{v_{1}}$. Since

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

we have the two relations $\overrightarrow{v_{2}}=-2 \overrightarrow{v_{1}}$ and $\overrightarrow{v_{3}}=\overrightarrow{v_{1}}$, giving the vectors $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ in the kernel of A. Neither of them is a scalar multiple of $\overrightarrow{v_{1}}$, so we can set $\overrightarrow{v_{3}}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$. Now

$$
\mathfrak{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis of R^{3} such that the linear transformation associated to A in \mathfrak{B} is $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. In particular

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 1 \\
3 & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 1 \\
3 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

as desired.

Problem 6.

Consider an $n \times n$ matrix A such that $A^{2}=0$, with $\operatorname{rank}(A)=r$ (above we have seen the case $n=3$ and $r=1$). Show that A is similar to the block matrix

$$
B=\left[\begin{array}{cccccc}
J & 0 & \cdots & 0 & \cdots & 0 \\
0 & J & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \cdots & J & \cdots & 0 \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right], \quad \text { where } \quad J=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Matrix B has r blocks of the form J along the diagonal, with all other entries being 0 . To show this, proceed as in the case above: Pick a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ of the image of A, write $\overrightarrow{v_{i}}=A \overrightarrow{w_{i}}$ for $i=1, \ldots, r$, and expand $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ to a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ of the kernel of A. Show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n}, and show that B is the matrix of $T(\vec{x})=A \vec{x}$ with respect to this basis.

Solution: To show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n} it is enough to prove that there are n of them and that they are linearly independent.
Since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ form a basis of the image of A we have $\operatorname{dim}(\operatorname{im}(A))=r$. Since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of the kernel of A then $\operatorname{dim}(\operatorname{ker}(A))=r+m$. Thus by the rank nullity Theorem we have $n=\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=r+r+m=2 r+m$ so indeed there are n vectors in the list $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$.

To see that they are linearly independent, suppose we have a linear combination $a_{1} \overrightarrow{v_{1}}+b_{1} \overrightarrow{w_{1}}+\cdots+a_{r} \overrightarrow{v_{r}}+b_{r} \overrightarrow{w_{r}}+c_{1} \overrightarrow{u_{1}}+\cdots+c_{m} \overrightarrow{u_{m}}=\overrightarrow{0}$. Applying A to both sides of the equality we obtain $b_{1} \overrightarrow{v_{1}}+\cdots+b_{r} \overrightarrow{v_{r}}=\overrightarrow{0}$ so $b_{1}=\cdots=b_{r}=0$ since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ are linearly independent. We then have $a_{1} \overrightarrow{v_{1}}+\cdots+a_{r} \overrightarrow{v_{r}}+c_{1} \overrightarrow{u_{1}}+\cdots+c_{m} \overrightarrow{u_{m}}=\overrightarrow{0}$, so $a_{1}=\cdots=a_{r}=c_{1}=\cdots=c_{m}=0$ since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ are linearly independent.
What remains is to show that the matrix B is similar to A with respect to this change of basis. Note that for each $i=1, \ldots, r$ the pair $\overrightarrow{v_{i}}, \overrightarrow{w_{i}}$ will contribute with a block

$$
J=\left[\left[A\left(\overrightarrow{v_{i}}\right)\right]_{\left\{\overrightarrow{v_{i}}, \overrightarrow{w_{i}}\right\}} \quad\left[A\left(\vec{w}_{i}\right)\right]_{\left\{\overrightarrow{v_{i}}, \overrightarrow{w_{i}}\right\}}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
b_{i, i} & b_{i, i+1} \\
b_{i+1, i} & b_{i+1, i+1}
\end{array}\right]
$$

to the matrix B, these blocks having their diagonal coincide with the diagonal of B. Moreover, since $A \overrightarrow{u_{j}}=\overrightarrow{0}$ for all $j=1, \ldots, m$, all the other entries of the matrix B are zero.

