Math 33A
Linear Algebra and Applications

Discussion 10

Problem 1.

Consider an $n \times m$ matrix A with $\operatorname{rank}(A)=m$, and a singular value decomposition $A=U \Sigma V^{T}$. Show that the least-squares solution of a linear system $A \vec{x}=\vec{b}$ can be written as

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}} .
$$

Problem 2(\star).

Consider the 4×2 matrix

$$
A=\frac{1}{10}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] .
$$

Find the least-squares solution of the linear system

$$
A \vec{x}=\vec{b} \quad \text { where } \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

Problem 3.

(a) Explain how any square matrix A can be written as $A=Q S$, where Q is orthogonal and S is symmetric positive semidefinite. This is called the polar decomposition of A.
(b) Is it possible to write $A=S_{1} Q_{1}$, where Q_{1} is orthogonal and S_{1} is symmetric positive semidefinite?

Problem 4.

Find a polar decomposition $A=Q S$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Draw a sketch showing $S(C)$ and $A(C)=Q(S(C)$), where C is the unit circle centered at the origin.

Problem 5.

Show that a singular value decomposition $A=U \Sigma V^{T}$ can be written as

$$
A=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r}{\overrightarrow{u_{r}}}_{r} \vec{v}_{r}^{T} .
$$

Problem 6.

Find a decomposition $A=\sigma_{1}{\overrightarrow{u_{1}}}_{\vec{v}_{1}}{ }^{T}+\sigma_{2}{\overrightarrow{u_{2}}}_{\vec{v}_{2}}{ }^{T}$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

