Math 33A Linear Algebra and Applications

Discussion 2

Problem $1(\star)$.

Show that if T is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then

$$T\begin{bmatrix}x_1\\\vdots\\x_m\end{bmatrix} = x_1T(\vec{e_1}) + \dots + x_mT(\vec{e_m}),$$

where $\vec{e_1}, \ldots, \vec{e_m}$ are the standard vectors in \mathbb{R}^m .

Problem 2.

Describe all linear transformations from \mathbb{R} to \mathbb{R} . What do their graphs look like?

Problem 3.

Describe all linear transformations from \mathbb{R}^2 to \mathbb{R} . What do their graphs look like?

Problem 4.

Consider two linear transformations $\vec{y} = T(\vec{x})$ and $\vec{z} = L(\vec{y})$, where T goes from \mathbb{R}^m to \mathbb{R}^p and L goes from \mathbb{R}^p to \mathbb{R}^n . Is the transformation $\vec{z} = L(T(\vec{x}))$ linear as well?

Problem 5.

Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

Find the matrix of the linear transformation $T(\vec{x}) = B(A\vec{x})$.