Math 33A
Linear Algebra and Applications
Discussion 4

Problem 1(\star).

Consider a matrix A of the form

$$
A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right],
$$

where $a^{2}+b^{2}=1$ and $a \neq 1$. Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis

$$
\left[\begin{array}{c}
b \\
1-a
\end{array}\right],\left[\begin{array}{c}
a-1 \\
b
\end{array}\right] .
$$

Interpret the answer geometrically.

Solution: There are two ways of seeing this, one more geometric, the other more algebraic. Geometrically, the vector $\overrightarrow{v_{1}}=\left[\begin{array}{c}b \\ 1-a\end{array}\right]$ determines a line in \mathbb{R}^{2}, and the vector $\overrightarrow{v_{2}}=\left[\begin{array}{c}a-1 \\ b\end{array}\right]$ is perpendicular to this line. The matrix A is representing a reflection about the line parallel to $\overrightarrow{v_{1}}$. In the basis $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ a reflection about this line keeps $\overrightarrow{v_{1}}$ untouched and changes the sign of $\overrightarrow{v_{2}}$, and thus a reflection about this line has matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Algebraically, the matrix is given by applying the linear transformation to $\overrightarrow{v_{1}}$ and putting the result in the first column, and then applying the linear transformation to $\overrightarrow{v_{2}}$ and putting the result in the second column, giving

$$
\begin{aligned}
{\left[\left[T\left(\overrightarrow{v_{1}}\right)\right]_{\mathfrak{B}} \quad\left[T\left(\overrightarrow{v_{2}}\right)\right]_{\mathfrak{B}}\right] } & \left.=\left[\left[\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
b \\
1-a
\end{array}\right]\right]_{\mathfrak{B}}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
1-a \\
-b
\end{array}\right]\right]_{\mathfrak{B}}\right] \\
& =\left[\left[\begin{array}{c}
a b+b-b a \\
b^{2}+a^{2}-a
\end{array}\right]_{\mathfrak{B}}\left[\begin{array}{c}
a^{2}+b^{2}-a \\
b a-b-a b
\end{array}\right]_{\mathfrak{B}}\right] \\
& =\left[\left[\begin{array}{c}
b \\
1-a
\end{array}\right]_{\mathfrak{B}}\left[\begin{array}{c}
1-a \\
-b
\end{array}\right]_{\mathfrak{B}}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{aligned}
$$

Problem 2.

Let A and B be square matrices, if there is an invertible matrix S such that $B=S^{-1} A S$ we say that A is similar to B. Find an invertible 2×2 matrix S such that

$$
S^{-1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] S
$$

is of the form

$$
\left[\begin{array}{cc}
0 & b \\
1 & d
\end{array}\right] .
$$

What can you say about two of those matrices?

Solution: Since S is a 2×2 matrix, it has four unknowns. Leaving b and d representing any two real numbers, we have the equation

$$
\frac{1}{x w-y z}\left[\begin{array}{cc}
w & -y \\
-z & x
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{ll}
0 & b \\
1 & d
\end{array}\right]
$$

which (interestingly enough, see Problem 4 for more details about this) forces $b=2$ and $d=5$. Setting x and w as free variables, these four equations impose the restrictions $2 y=w-x$ and $4 z=w-3 x$. Since S has to be invertible, we have the additional restriction $x w-y z=\operatorname{det}(S) \neq 0$, which with the above solutions becomes $w^{2}-12 w x+3 x^{2} \neq 0$. Thus, as long as this invertibility condition is satisfied, we have

$$
S=\left[\begin{array}{cc}
x & \frac{w-x}{2} \\
\frac{w-3 x}{4} & w
\end{array}\right] .
$$

The matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is similar to the matrix $\left[\begin{array}{ll}0 & 2 \\ 1 & 5\end{array}\right]$.

Problem 3.

If A is a 2×2 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

show that A is similar to a diagonal matrix D. Find an invertible S such that $S^{-1} A S=$ D.

Solution: Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by A, namely $T(\vec{x})=A \vec{x}$. Since we are given the image of $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, consider the basis $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$. The matrix of T with respect to \mathfrak{B} is

$$
D=\left[\left[T\left(\overrightarrow{v_{1}}\right)\right]_{\mathfrak{B}} \quad\left[T\left(\overrightarrow{v_{2}}\right)\right]_{\mathfrak{B}}\right]=\left[\left[\begin{array}{l}
3 \\
6
\end{array}\right]_{\mathfrak{B}}\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]_{\mathfrak{B}}\right]=\left[S^{-1}\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad S^{-1}\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right] .
$$

Since we have changed from the standard basis to a new basis, we have $A=S D S^{-1}$, and thus $D=S^{-1} A S$ so A is similar to D.

Problem 4.

If $c \neq 0$, find the matrix of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \vec{x}
$$

with respect to the basis

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
c
\end{array}\right] .
$$

Solution: Denote this basis $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$, the matrix of T with respect to \mathfrak{B} is

$$
\begin{aligned}
{\left[\left[T\left(\overrightarrow{v_{1}}\right)\right]_{\mathfrak{B}}\left[T\left(\overrightarrow{v_{2}}\right)\right]_{\mathfrak{B}}\right] } & \left.=\left[\left[\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]_{\mathfrak{B}}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
a \\
c
\end{array}\right]\right]_{\mathfrak{B}}\right] \\
& =\left[\left[\begin{array}{l}
a \\
c
\end{array}\right]_{\mathfrak{B}}\left[\begin{array}{l}
a^{2}+b c \\
a c+c d
\end{array}\right]_{\mathfrak{B}}\right]=\left[\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]^{-1}\left[\begin{array}{l}
a \\
c
\end{array}\right]\left[\begin{array}{ll}
1 & a \\
0 & c
\end{array}\right]^{-1}\left[\begin{array}{l}
a^{2}+b c \\
a c+c d
\end{array}\right]\right] \\
& =\left[\left[\begin{array}{cc}
1 & -a / c \\
0 & 1 / c
\end{array}\right]\left[\begin{array}{l}
a \\
c
\end{array}\right]\left[\begin{array}{cc}
1 & -a / c \\
0 & 1 / c
\end{array}\right]\left[\begin{array}{l}
a^{2}+b c \\
a c+c d
\end{array}\right]\right]=\left[\begin{array}{cc}
0 & b c-a d \\
1 & a+d
\end{array}\right] .
\end{aligned}
$$

This explains what is going on in Problem 2. Setting $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, via a change of basis it will be similar to a matrix of the form $\left[\begin{array}{cc}0 & b c-a d \\ 1 & a+d\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 1 & 5\end{array}\right]$, forcing the mysterious appearance of the column $\left[\begin{array}{l}2 \\ 5\end{array}\right]$. Moreover, this forces $\overrightarrow{v_{2}}=\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. In particular, using as basis the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, we have that $S=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right]$ is a solution for Problem 2.

Problem 5.

Is there a basis \mathfrak{B} of \mathbb{R}^{2} such that \mathfrak{B}-matrix B of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \vec{x}
$$

is upper triangular?

Solution: No. Note first that T is a rotation of angle $\pi / 2$. Note second that if T could be written as an upper triangular matrix in the basis $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ that would mean that $T\left(\overrightarrow{v_{1}}\right)=k \overrightarrow{v_{1}}$ for some real scalar k. In other words, $T\left(\overrightarrow{v_{1}}\right)$ would be parallel to $\overrightarrow{v_{1}}$. However, since T is a rotation, this is impossible.

