Math 33A
Linear Algebra and Applications
Discussion 5

Problem 1.

Here is an infinite-dimensional version of Euclidean space: In the space of all infinite sequences, consider the subspace ℓ_{2} of square-summable sequences (namely, those sequences $\left(x_{1}, x_{2}, \ldots\right)$ for which the infinite series $x_{1}^{2}+x_{2}^{2}+\cdots$ converges). For x and y in ℓ_{2}, we define

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots} \quad \text { and } \quad \vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots
$$

A preliminary question is, why do $\|\vec{x}\|$ and $\vec{x} \cdot \vec{y}$ make sense, that is, why are they finite real numbers?
(a) Check that $\vec{x}=(1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots)$ is in ℓ_{2}, and find $\|\vec{x}\|$. Recall the formula for the geometric series: $1+a+a^{2}+a^{3}+\cdots=1 /(1-a)$ if $-1<a<1$.
(b) Find the angle between $(1,0,0,0, \ldots)$ and $(1,1 / 2,1 / 4,1 / 8, \ldots)$.
(c) Give an example of a sequence $\left(x_{1}, x_{2}, \ldots\right)$ that converges to $0\left(\lim _{n \rightarrow \infty} x_{n}=0\right)$ but does not belong to ℓ_{2}.
(d) Let L be the subspace of ℓ_{2} spanned by $(1,1 / 2,1 / 4,1 / 8, \ldots)$. Find the orthogonal projection of $(1,0,0,0, \ldots)$ onto L.
The Hilbert space ℓ_{2} was initially used mostly in physics: Werner Heisenberg's formulation of quantum mechanics is in terms of ℓ_{2}. Today, this space is used in many other applications, including economics. See, for example, the work of the economist Andreu Mas-Colell of the University of Barcelona.

Problem 2.

Give an algebraic proof for the triangle inequality

$$
\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\| .
$$

Draw a sketch.

Problem 3(\star).

(a) Consider a vector \vec{v} in \mathbb{R}^{n}, and a scalar k. Show that $\|k \vec{v}\|=|k|\|\vec{v}\|$.
(b) Show that if \vec{v} is a nonzero vector in \mathbb{R}^{n}, then $\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector.

Problem 4.

Can you find a line L in \mathbb{R}^{n} and a vector \vec{x} in \mathbb{R}^{n} such that $\vec{x} \cdot \operatorname{proj}_{L} \vec{x}$ is negative? Explain, arguing algebraically.

