${\bf Math~33A} \\ {\bf Linear~Algebra~and~Applications}$

 ${\bf Discussion} \ {\bf 5}$

Problem 1.

Here is an infinite-dimensional version of Euclidean space: In the space of all infinite sequences, consider the subspace ℓ_2 of square-summable sequences (namely, those sequences (x_1, x_2, \dots) for which the infinite series $x_1^2 + x_2^2 + \cdots$ converges). For x and y in ℓ_2 , we define

$$||\vec{x}|| = \sqrt{x_1^2 + x_2^2 + \cdots}$$
 and $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \cdots$.

A preliminary question is, why do $||\vec{x}||$ and $\vec{x} \cdot \vec{y}$ make sense, that is, why are they finite real numbers?

- (a) Check that $\vec{x} = (1, 1/2, 1/4, 1/8, 1/16, \dots)$ is in ℓ_2 , and find $||\vec{x}||$. Recall the formula for the geometric series: $1 + a + a^2 + a^3 + \dots = 1/(1-a)$ if -1 < a < 1.
- (b) Find the angle between (1, 0, 0, 0, ...) and (1, 1/2, 1/4, 1/8, ...).
- (c) Give an example of a sequence $(x_1, x_2, ...)$ that converges to 0 ($\lim_{n\to\infty} x_n = 0$) but does not belong to ℓ_2 .
- (d) Let L be the subspace of ℓ_2 spanned by (1, 1/2, 1/4, 1/8, ...). Find the orthogonal projection of (1, 0, 0, 0, ...) onto L.

The Hilbert space ℓ_2 was initially used mostly in physics: Werner Heisenberg's formulation of quantum mechanics is in terms of ℓ_2 . Today, this space is used in many other applications, including economics. See, for example, the work of the economist Andreu Mas-Colell of the University of Barcelona.

Problem 2.

Give an algebraic proof for the triangle inequality

$$||\vec{v} + \vec{w}|| < ||\vec{v}|| + ||\vec{w}||.$$

Draw a sketch.

Problem $3(\star)$.

- (a) Consider a vector \vec{v} in \mathbb{R}^n , and a scalar k. Show that $||k\vec{v}|| = |k|||\vec{v}||$.
- (b) Show that if \vec{v} is a nonzero vector in \mathbb{R}^n , then $\vec{u} = \frac{\vec{v}}{||\vec{v}||}$ is a unit vector.

Problem 4.

Can you find a line L in \mathbb{R}^n and a vector \vec{x} in \mathbb{R}^n such that $\vec{x} \cdot \operatorname{proj}_L \vec{x}$ is negative? Explain, arguing algebraically.