Math 115A
Linear Algebra
Discussion 10

Problem 1(\star).

Let V be a finite dimensional inner product space, let $T \in \mathcal{L}(V)$. Prove that λ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.

Problem 2.

Let V be a finite dimensional inner product space, let $T \in \mathcal{L}(V)$, let U be a subspace of V. Prove that U is T-invariant if and only if U^{\perp} is T^{*}-invariant.

Problem 3.

Let V be a finite dimensional complex inner product space, let $T \in \mathcal{L}(V)$ be normal, let U be a subspace of V. Prove that U is T-invariant if and only if U is T^{*}-invariant.

Problem 4.

Let V be a finite dimensional inner product space, let $T \in \mathcal{L}(V)$ be normal. Prove that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{*}\right)$ and $\operatorname{im}(T)=\operatorname{im}\left(T^{*}\right)$.

Problem 5.

Let V be a finite dimensional real inner product space, let $T \in \mathcal{L}(V)$ be normal such that its characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Deduce that T is self-adjoint.

Problem 6.

Let V be an inner product space, let $S, T \in \mathcal{L}(V)$ be self-adjoint. Prove that $T S$ is self-adjoint if and only if $T S=S T$.

Problem 7(\star).

Let V be a complex inner product space, let $T \in \mathcal{L}(V)$. Define $T_{1}=\left(T+T^{*}\right) / 2$ and $T_{2}=i\left(T^{*}-T\right) / 2$.
(a) Prove that T_{1} and T_{2} are self-adjoint and that $T=T_{1}+i T_{2}$.
(b) Suppose that $T=U_{1}+i U_{2}$ for $U_{1}, U_{2} \in \mathcal{L}(V)$ self-adjoint. Prove that $U_{1}=T_{1}$ and $U_{2}=T_{2}$.
(c) Prove that T is normal if and only if $T_{1} T_{2}=T_{2} T_{1}$.

