Math 115A
Linear Algebra
Discussion 5

Problem 1.

Let A and B be $n \times n$ invertible matrices.
(a) Prove that $A B$ is invertible.
(b) Prove that $(A B)^{-1}=B^{-1} A^{-1}$.

Problem 2(\star).

Let A be invertible.
(a) Prove that A^{t} is invertible.
(b) Prove that $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.

Problem 3.

Prove that if A is invertible and $A B=O$, then $B=O$.

Problem 4.

Let A be an $n \times n$ matrix.
(a) Suppose that $A^{2}=O$. Prove that A is not invertible.
(b) Suppose that $A B=O$ for some nonzero $n \times n$ matrix B. Is A invertible? Why?

Problem 5.

(a) Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that A and B are invertible.
(b) Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix such that $A B$ is an invertible $n \times n$ matrix. Is A invertible? Is B invertible? Why? Give examples if possible.

Problem 6(\star).

Let A and B be $n \times n$ matrices such that $A B=I_{n}$.
(a) Prove that A and B are invertible.
(b) Prove that $A=B^{-1}$ and $B=A^{-1}$.
(c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.

We are saying that for square matrices (and for linear transformations between vector spaces of the same dimension), having a one sided inverse is equivalent to having a two sided inverse.

Problem 7.

Let A and B be matrices in $M_{n \times n}(\mathbb{F})$. We say that B is similar to A if there exists an invertible matrix Q such that $B=Q^{-1} A Q$.
(a) Prove that $A \sim B$ whenever B is similar to A is an equivalence relation in $M_{n \times n}(\mathbb{F})$.
(b) Prove that if A and B are similar then $\operatorname{tr}(A)=\operatorname{tr}(B)$.

