$\begin{array}{c} {\rm Math}~115A \\ {\rm Linear}~{\rm Algebra} \end{array}$

Discussion 5

Problem 1.

Let A and B be $n \times n$ invertible matrices.

- (a) Prove that AB is invertible.
- (b) Prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Problem $2(\star)$.

Let A be invertible.

- (a) Prove that A^t is invertible.
- (b) Prove that $(A^t)^{-1} = (A^{-1})^t$.

Problem 3.

Prove that if A is invertible and AB = O, then B = O.

Problem 4.

Let A be an $n \times n$ matrix.

- (a) Suppose that $A^2 = O$. Prove that A is not invertible.
- (b) Suppose that AB = O for some nonzero $n \times n$ matrix B. Is A invertible? Why?

Problem 5.

- (a) Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible.
- (b) Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix such that AB is an invertible $n \times n$ matrix. Is A invertible? Is B invertible? Why? Give examples if possible.

Problem $6(\star)$.

Let A and B be $n \times n$ matrices such that $AB = I_n$.

- (a) Prove that A and B are invertible.
- (b) Prove that $A = B^{-1}$ and $B = A^{-1}$.
- (c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.

We are saying that for square matrices (and for linear transformations between vector spaces of the same dimension), having a one sided inverse is equivalent to having a two sided inverse.

Problem 7.

Let A and B be matrices in $M_{n\times n}(\mathbb{F})$. We say that B is *similar* to A if there exists an invertible matrix Q such that $B=Q^{-1}AQ$.

- (a) Prove that $A \sim B$ whenever B is similar to A is an equivalence relation in $M_{n \times n}(\mathbb{F})$.
- (b) Prove that if A and B are similar then tr(A) = tr(B).