Math 115A
Linear Algebra
Discussion 6

Problem 1(\star).

An elementary matrix is a matrix obtained from the identity by performing one elementary row operation.
(a) Denote by $T_{i j}$ the elementary matrix obtained by exchanging the i-th and j-th rows.

Write $T_{i j}$ in matrix form. Compute $\operatorname{det}\left(T_{i j}\right)$. Prove that $\operatorname{det}\left(T_{i j}^{t}\right)=\operatorname{det}\left(T_{i j}\right)$. Prove that $T_{i j}^{-1}=T_{i j}$.
(b) Denote by $D_{i}(m)$ the elementary matrix obtained by multiply the i-th row by a scalar m. Write $D_{i}(m)$ in matrix form. Compute $\operatorname{det}\left(D_{i}(m)\right)$. Prove that $\operatorname{det}\left(D_{i}(m)^{t}\right)=\operatorname{det}\left(D_{i}(m)\right)$. Prove that $D_{i}(m)^{-1}=D_{i}(1 / m)$.
(c) We denote by $L_{i j}(m)$ the elementary matrix obtained by adding to the i-th row the j-th row multiplied by a scalar m. Write $L_{i j}(m)$ in matrix form. Compute $\operatorname{det}\left(L_{i j}(m)\right)$. Prove that $\operatorname{det}\left(L_{i j}(m)^{t}\right)=\operatorname{det}\left(L_{i j}(m)\right)$. Prove that $L_{i j}(m)^{-1}=$ $L_{i j}(-m)$.

Problem 2.

A matrix $M \in M_{n \times n}(\mathbb{C})$ is called nilpotent if $M^{k}=O$ for some positive integer k. Prove that if M is nilpotent then $\operatorname{det}(M)=0$.

Problem 3.

A matrix $M \in M_{n \times n}(\mathbb{C})$ is called skew-symmetric if $M^{t}=-M$. Prove that if M is skew-symmetric and n is odd then M is not invertible. What happens if n is even? Give examples if possible.

Problem 4.

A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $Q Q^{t}=I_{n}$. Prove that if Q is orthogonal then $\operatorname{det}(Q) \in\{-1,1\}$.

Problem 5(\star).
Let $M \in M_{n \times n}(\mathbb{C})$, define the matrix \bar{M} via $(\bar{M})_{i j}=\overline{M_{i j}}$ for all $i, j \in\{1, \ldots, n\}$.
(a) Prove that $\operatorname{det}(\bar{M})=\overline{\operatorname{det}(M)}$.
(b) Prove that $\overline{M^{t}}=(\bar{M})^{t}$. Define $M^{*}=\overline{M^{t}}$.
(c) A matrix $Q \in M_{n \times n}(\mathbb{C})$ is called unitary if $Q Q^{*}=I_{n}$. Prove that if Q is unitary then the modulus of the complex number $\operatorname{det}(Q)$ is 1 , that is, $|\operatorname{det}(Q)|=1$.

Problem 6.

A matrix $A \in M_{n \times n}(\mathbb{F})$ is called lower triangular if $A_{i j}=0$ whenever $1 \leq i<j \leq n$. Let A be lower triangular, $\operatorname{describe} \operatorname{det}(A)$ in terms of the entries of A. Prove your claim.

Problem 7.

Let $A, B \in M_{n \times n}(\mathbb{F})$. Prove that if A is similar to B then $\operatorname{det}(A)=\operatorname{det}(B)$.

