Math 115A
Linear Algebra
Discussion 8

Problem 1.

Let $A \in M_{n \times n}(\mathbb{F})$ have n distinct eigenvalues. Prove that A is diagonalizable.

Problem 2.

Let $A \in M_{n \times n}(\mathbb{F})$ have two distinct eigenvalues λ_{1} and λ_{2}, and suppose that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=$ $n-1$. Prove that A is diagonalizable.

Problem 3(\star).

Let $A \in M_{n \times n}(\mathbb{F})$ be similar to an upper triangular matrix, and suppose that A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ with corresponding algebraic multiplicities m_{1}, \ldots, m_{k}.
(a) Prove that $\operatorname{tr}(A)=\sum_{i=1}^{k} m_{i} \lambda_{i}$.
(b) Prove that $\operatorname{det}(A)=\prod_{i=1}^{k} \lambda_{i}^{m_{i}}$.

Problem 4(\star).

Let V be a finite dimensional vector space over \mathbb{F}, let $T \in \mathcal{L}(V)$ be invertible.
(a) Prove that if λ is an eigenvalue of T then λ^{-1} is an eigenvalue of T^{-1}.
(b) Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1}.
(c) Prove that if T is diagonalizable, then T^{-1} is diagonalizable.

Problem 5.

Let V be a finite dimensional inner product space over \mathbb{F}. Prove that $\|u+v\|^{2}+\|u-v\|^{2}=$ $2\left(\|u\|^{2}+\|v\|^{2}\right)$ for all $u, v \in V$. This is called the parallelogram law. Interpret this equality geometrically, namely explain its relation with parallelograms.

Problem 6.

Let V be a finite dimensional inner product space over \mathbb{F}.
(a) Suppose that $\mathbb{F}=\mathbb{R}$. Prove that for all $u, v \in V$ we have

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

(b) Suppose that $\mathbb{F}=\mathbb{C}$. Prove that for all $u, v \in V$ we have

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4} .
$$

Problem 7.

Let V be a finite dimensional vector space over $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. A norm on V is a real-valued function $\|\cdot\|: V \rightarrow \mathbb{R}$ satisfying that for all $x, y \in V$ and $a \in \mathbb{F}$ we have $\|x\| \geq 0$ with $\|x\|=0$ if and only if $x=0,\|a x\|=|a| \cdot\|x\|$, and $\|x+y\| \leq\|x\|+\|y\|$. Let $\|\cdot\|$ be a norm on V satisfying $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$ for all $u, v \in V$.
(a) Suppose that $\mathbb{F}=\mathbb{R}$. Find an inner product $\langle\cdot, \cdot\rangle$ on V such that $\|x\|^{2}=\langle x, x\rangle$.
(b) Suppose that $\mathbb{F}=\mathbb{C}$. Find an inner product $\langle\cdot, \cdot\rangle$ on V such that $\|x\|^{2}=\langle x, x\rangle$.

