Math 115A Linear Algebra

Discussion 9

Problem 1.

- (a) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n if and only if there exists a symmetric matrix A with strictly positive eigenvalues such that $\langle x, y \rangle = x^t A y$ for all $x, y \in \mathbb{R}^n$. What is A when the inner product over \mathbb{R}^n is $\langle x, y \rangle = x \cdot y$, the usual dot product of the vectors x and y?
- (b) Let $M \in M_{n \times n}(\mathbb{C})$, we say that M is self-adjoint when $M^* = M$. Prove that $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{C}^n if and only if there exists a self-adjoint matrix A with strictly positive eigenvalues such that $\langle x, y \rangle = \bar{x}^t A y$ for all $x, y \in \mathbb{C}^n$.

Problem 2.

- (a) Prove that $||(x_1, ..., x_n)||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$ for $1 \le p < \infty$ is a norm on \mathbb{R}^n .
- (b) Is $||(x_1, \ldots, x_n)||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$ for $0 a norm on <math>\mathbb{R}^n$?
- (c) Prove that $||(x_1, \ldots, x_n)||_{\infty} = \max\{|x_1|, \ldots, |x_n|\}$ is a norm on \mathbb{R}^n .

Problem $3(\star)$.

Let V be an inner product space, let W be a finite dimensional subspace of V. Prove that if $x \notin W$ then there exists $y \in W^{\perp}$ with $\langle x, y \rangle \neq 0$.

Problem $4(\star)$.

Let V be a finite dimensional inner product space, let W be a subspace of V. Prove that V/W is isomorphic to W^{\perp} .

Problem 5.

Let V be an inner product space, and suppose that $u, v \in V$ are orthogonal. Prove that $||u+v||^2 = ||u||^2 + ||v||^2$. Deduce the Pythagorean theorem in \mathbb{R}^2 .

Problem 6.

Let V be an inner product space over \mathbb{F} , let $\{v_1, \ldots, v_k\}$ be an orthogonal set in V, let $a_1, \ldots, a_k \in \mathbb{F}$. Prove that $||\sum_{i=1}^k a_i v_i||^2 = \sum_{i=1}^k |a_i|^2 ||v_i||^2$.

Problem 7.

Let V be an inner product space over \mathbb{F} , let $T: V \to V$ be a projection. We say that T is an *orthogonal projection* whenever $\operatorname{im}(T)^{\perp} = \ker(T)$.

- (a) Prove that if $T \in \mathcal{L}(V)$ is an orthogonal projection then $\ker(T)^{\perp} = \operatorname{im}(T)$.
- (b) Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and $||P(v)|| \le ||v||$ for all $v \in V$, then P is an orthogonal projection.