Math 115A
Linear Algebra
Discussion 9

Problem 1.

(a) Prove that $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{R}^{n} if and only if there exists a symmetric matrix A with strictly positive eigenvalues such that $\langle x, y\rangle=x^{t} A y$ for all $x, y \in \mathbb{R}^{n}$. What is A when the inner product over \mathbb{R}^{n} is $\langle x, y\rangle=x \cdot y$, the usual dot product of the vectors x and y ?
(b) Let $M \in M_{n \times n}(\mathbb{C})$, we say that M is self-adjoint when $M^{*}=M$. Prove that $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{C}^{n} if and only if there exists a self-adjoint matrix A with strictly positive eigenvalues such that $\langle x, y\rangle=\bar{x}^{t} A y$ for all $x, y \in \mathbb{C}^{n}$.

Problem 2.

(a) Prove that $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$ for $1 \leq p<\infty$ is a norm on \mathbb{R}^{n}.
(b) Is $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$ for $0<p<1$ a norm on \mathbb{R}^{n} ?
(c) Prove that $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$ is a norm on \mathbb{R}^{n}.

Problem 3(\star).

Let V be an inner product space, let W be a finite dimensional subspace of V. Prove that if $x \notin W$ then there exists $y \in W^{\perp}$ with $\langle x, y\rangle \neq 0$.

Problem 4(\star).

Let V be a finite dimensional inner product space, let W be a subspace of V. Prove that V / W is isomorphic to W^{\perp}.

Problem 5.

Let V be an inner product space, and suppose that $u, v \in V$ are orthogonal. Prove that $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$. Deduce the Pythagorean theorem in \mathbb{R}^{2}.

Problem 6.

Let V be an inner product space over \mathbb{F}, let $\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthogonal set in V, let $a_{1}, \ldots, a_{k} \in \mathbb{F}$. Prove that $\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{k}\left|a_{i}\right|^{2}\left\|v_{i}\right\|^{2}$.

Problem 7.

Let V be an inner product space over \mathbb{F}, let $T: V \rightarrow V$ be a projection. We say that T is an orthogonal projection whenever $\operatorname{im}(T)^{\perp}=\operatorname{ker}(T)$.
(a) Prove that if $T \in \mathcal{L}(V)$ is an orthogonal projection then $\operatorname{ker}(T)^{\perp}=\operatorname{im}(T)$.
(b) Prove that if $P \in \mathcal{L}(V)$ is such that $P^{2}=P$ and $\|P(v)\| \leq\|v\|$ for all $v \in V$, then P is an orthogonal projection.

