Math 115A
Linear Algebra
Discussion 3

Problem 1.

Let V and W be vector spaces, let $T: V \rightarrow W$ be a linear function.
(a) Prove that T is injective if and only if T sends linearly independent subsets of V to linearly independent subsets of W.
(b) Suppose that T is injective and that S is a subset of V. Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
(c) Suppose $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and T is injective and surjective. Prove that $T(\beta)=\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of W.

Problem 2(\star).

(a) Prove that the function

$$
\begin{aligned}
T: \mathbb{F}[x] & \longrightarrow \\
f(x) & \longmapsto \\
& \longmapsto \int_{0}^{x} f(x] \\
& f(t) d t
\end{aligned}
$$

is linear and injective, but not surjective.
(b) Prove that the function

$$
\begin{aligned}
& T: \mathbb{F}[x] \longrightarrow \mathbb{F}[x] \\
& f(x) \\
& \longmapsto \frac{d}{d x} f(x)
\end{aligned}
$$

is linear and surjective, but not injective.

Problem 3.

Let \mathbb{F} be a field and $V=\left\{\left\{a_{i}\right\}_{i \in \mathbb{N}} \mid a_{i} \in \mathbb{F}\right.$ and $\exists n \in \mathbb{N}$ with $a_{i}=0$ for all $\left.i \geq n\right\}$.
(a) Prove that V is a vector space with $\left\{a_{i}\right\}_{i \in \mathbb{N}}+\left\{b_{i}\right\}_{i \in \mathbb{N}}=\left\{a_{i}+b_{i}\right\}_{i \in \mathbb{N}}$ and $c\left\{a_{i}\right\}_{i \in \mathbb{N}}=$ $\left\{c a_{i}\right\}_{i \in \mathbb{N}}$ for all $\left\{a_{i}\right\}_{i \in \mathbb{N}},\left\{b_{i}\right\}_{i \in \mathbb{N}} \in V$ and $c \in \mathbb{F}$.
(b) Prove that the function $L: V \rightarrow V$ given by $L\left(\left\{a_{i}\right\}_{i \in \mathbb{N}}\right)=\left\{a_{i+1}\right\}_{i \in \mathbb{N}}$ is linear and surjective, but not injective.
(c) Prove that the function $R: V \rightarrow V$ given by $R\left(\left\{a_{i}\right\}_{i \in \mathbb{N}}\right)=\left\{a_{i-1}\right\}_{i \in \mathbb{N}}$, where $a_{-1}=0$ by convention, is linear and injective, but not surjective.

Problem 4(\star).

Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be a linear function.
(a) Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T cannot be surjective.
(b) Prove that if $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T cannot be injective.

Problem 5.

Let V be a vector space, let $T: V \rightarrow V$ be a linear function. Given a subset U of V we say that U is T-invariant if $T(U) \subseteq U$. Prove that if $U_{1}, U_{2} \subseteq V$ are T-invariant, then $U_{1}+U_{2}$ is T-invariant.

Problem 6.

Let $T: V \rightarrow V$ be a linear function. Prove that $\{0\}, V, \operatorname{ker}(T)$, and $\operatorname{im}(T)$ are all T-invariant.

Problem 7.

Let $T: V \rightarrow V$ be a linear function and U a T-invariant subset of V. Define the restriction of T on U as the function $T_{U}: U \rightarrow U$ given by $T_{U}(u)=T(u)$ for all $u \in U$. Prove that $T_{U}: U \rightarrow U$ is linear.

