Math 115A
Linear Algebra
Discussion 4

Problem 1.

Let V be a finite dimensional vector space with an ordered basis β. Define the function $T: V \rightarrow \mathbb{F}^{n}$ by $T(x)=[x]_{\beta}$. Prove that T is linear.

Problem 2.

A function $T: V \rightarrow W$ between the vector spaces V and W is called additive when $T(x+y)=T(x)+T(y)$ for all $x, y \in V$. Let $V=\mathbb{C}$ be the vector space of complex numbers over the field \mathbb{C}. Define the function $T: V \rightarrow V$ by $T(z)=\bar{z}$, where \bar{z} is the complex conjugate of z.
(a) Prove that T is additive.
(b) Prove that T is not linear.

Problem 3(\star).

Let $V=\mathbb{C}$ be the vector space of complex numbers over the field \mathbb{R}. Define the function $T: V \rightarrow V$ by $T(z)=\bar{z}$, where \bar{z} is the complex conjugate of z.
(a) Prove that T is additive.
(b) Prove that T is linear.
(c) Let $\beta=\{1, i\}$. Prove that β is a basis of V over \mathbb{R}.
(d) Compute $[T]_{\beta}$.

Problem 4.

Let V be a vector space with the ordered basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $v_{0}=0$, let $T: V \rightarrow V$ be a linear transformation such that $T\left(v_{j}\right)=v_{j}+v_{j-1}$ for $j \in\{1, \ldots, n\}$.
(a) Prove that T exists and that T is unique.
(b) Compute $[T]_{\beta}$.

Problem 5(\star).

Let V be a vector space of dimension n, let $T: V \rightarrow V$ be a linear function. Suppose that W is a T-invariant subspace of V with dimension k. Show that there exists a basis β of V such that

$$
[T]_{\beta}=\left[\begin{array}{ll}
A & B \\
O & C
\end{array}\right]
$$

where A is a $k \times k$ matrix, B and C are $k \times(n-k)$ matrices, and O is the $(n-k) \times k$ zero matrix.

Problem 6.

Let A be an $n \times n$ matrix. Prove that A is a diagonal matrix if and only if $A_{i j}=\delta_{i j} A_{i j}$ for all $i, j \in\{1, \ldots, n\}$.

Problem 7.

Let A and B be $n \times n$ matrices. The trace of a matrix A, denoted $\operatorname{tr}(A)$, is the sum of its diagonal entries. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Prove that $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$.

