Math 115A Linear Algebra

Discussion 7

Problem $1(\star)$.

Let V be a finite dimensional vector space over \mathbb{R} . Show that if $\dim(V)$ is odd, then every $T \in \mathcal{L}(V)$ has an eigenvalue.

Problem 2.

Let V be a finite dimensional vector space over \mathbb{R} and $T \in \mathcal{L}(V)$ has no real eigenvalues. Prove that every T-invariant subspace of V has even dimension.

Problem 3.

Let V be a finite dimensional vector space over \mathbb{R} . Prove that every $T \in \mathcal{L}(V)$ has an invariant subspace of dimension one or two.

Problem 4.

Let V be a vector space over \mathbb{F} of dimension n. Suppose that $T \in \mathcal{L}(V)$ has n distinct eigenvalues.

- (a) Prove that T has n distinct eigenvectors forming a basis of V.
- (b) Prove that if $S \in \mathcal{L}(V)$ has the same eigenvectors as T (but not necessarily the same eigenvalues) then ST = TS.

Problem 5.

Let V be a vector space over \mathbb{F} of dimension n. Suppose that $T \in \mathcal{L}(V)$ is such that all subspaces of V of dimension n-1 are T-invariant. Prove that T is a scalar multiple of the identity operator.

Problem $6(\star)$.

Let V be a vector space over \mathbb{F} of dimension n, let $T \in \mathcal{L}(V)$, let β be an ordered basis of V. The *determinant* of T, denoted $\det(T)$, is defined as $\det(T) = \det([T]_{\beta})$.

- (a) Prove that the determinant of T is independent of the choice of β . Namely, prove that if β and γ are two ordered bases of V, then $\det([T]_{\beta}) = \det([T]_{\gamma})$.
- (b) Prove that T is invertible if and only if $det(T) \neq 0$.
- (c) Prove that if T is invertible, then $det(T^{-1}) = det(T)^{-1}$.
- (d) Prove that if $S \in \mathcal{L}(V)$ then $\det(TS) = \det(T) \det(S)$.
- (e) Prove that if $\lambda \in \mathbb{F}$ then $\det(T \lambda \mathrm{id}_V) = \det([T]_{\beta} \lambda I_n)$.