Math 115A
Linear Algebra

Discussion 7

Problem 1(\star).

Let V be a finite dimensional vector space over \mathbb{R}. Show that if $\operatorname{dim}(V)$ is odd, then every $T \in \mathcal{L}(V)$ has an eigenvalue.

Problem 2.

Let V be a finite dimensional vector space over \mathbb{R} and $T \in \mathcal{L}(V)$ has no real eigenvalues. Prove that every T-invariant subspace of V has even dimension.

Problem 3.

Let V be a finite dimensional vector space over \mathbb{R}. Prove that every $T \in \mathcal{L}(V)$ has an invariant subspace of dimension one or two.

Problem 4.

Let V be a vector space over \mathbb{F} of dimension n. Suppose that $T \in \mathcal{L}(V)$ has n distinct eigenvalues.
(a) Prove that T has n distinct eigenvectors forming a basis of V.
(b) Prove that if $S \in \mathcal{L}(V)$ has the same eigenvectors as T (but not necessarily the same eigenvalues) then $S T=T S$.

Problem 5.

Let V be a vector space over \mathbb{F} of dimension n. Suppose that $T \in \mathcal{L}(V)$ is such that all subspaces of V of dimension $n-1$ are T-invariant. Prove that T is a scalar multiple of the identity operator.

Problem 6(\star).

Let V be a vector space over \mathbb{F} of dimension n, let $T \in \mathcal{L}(V)$, let β be an ordered basis of V. The determinant of T, denoted $\operatorname{det}(T)$, is defined as $\operatorname{det}(T)=\operatorname{det}\left([T]_{\beta}\right)$.
(a) Prove that the determinant of T is independent of the choice of β. Namely, prove that if β and γ are two ordered bases of V, then $\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left([T]_{\gamma}\right)$.
(b) Prove that T is invertible if and only if $\operatorname{det}(T) \neq 0$.
(c) Prove that if T is invertible, then $\operatorname{det}\left(T^{-1}\right)=\operatorname{det}(T)^{-1}$.
(d) Prove that if $S \in \mathcal{L}(V)$ then $\operatorname{det}(T S)=\operatorname{det}(T) \operatorname{det}(S)$.
(e) Prove that if $\lambda \in \mathbb{F}$ then $\operatorname{det}\left(T-\operatorname{id}_{V}\right)=\operatorname{det}\left([T]_{\beta}-\lambda I_{n}\right)$.

