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Introduction

This document is meant to be a free set of notes supporting a 30-hour course
of linear algebra, like the Math115A and Math115AH classes at UCLA. It presup-
poses some familiarity with solving linear equations (the Gaussian technique, a. k. a.
Gauss-Jordan elimination method), some knowledge of vectors and matrices, etc,
as provided in an entry-level linear algebra class, like Math33A at UCLA. This text
addresses the reader as a student of one such linear algebra class.

All comments in footnote can be safely ignored. They provide general education
to students interested in learning more mathematics later on.

We use little mathematical notation. They are recalled in Appendix A.
Some techniques of proof are gathered in Appendix C. In some sense, this

course is a gateway to rigorous proofs. Some arguments are therefore spelled out
in more detail than necessary, also to build this skill set. The result is that every
given section may be a little longer than a 50-minute class, although the rough
estimate should be one section, one class. In the case of some longer sections, it
will hopefully be clear that two 50-minute classes are preferable.

Specifically for Math115A at UCLA, the sections marked with a * (for instance
in the table-of-content) are usually done only in the honors class, Math115AH.
Some of the sections should probably be taught by the TA, in discussion, e.g. the
first section on fields.

Students should begin by refreshing their knowledge of vector and matrix calcu-
lus (addition, multiplication, and the geometric interpretation in Euclidean plane R2

and space R3) and the Gauss-Jordan technique of solving systems of linear equations
in several variables, by row-reduction.
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CHAPTER 1

Vector spaces

1.1. Fields

Linear algebra can be done over the real numbers R, over the complex num-
bers C, or over other collections of so-called ‘scalars’. Despite what you may think
from the easy problems of a first-course linear algebra, you cannot do linear algebra
with using only the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}.
The reason is that when you solve systems of linear equations, using the Gaussian
elimination method, you need to divide by non-zero numbers, to create ‘pivots’,
i.e. 1’s at the beginning of a row. Therefore, the simplest set of ‘scalars’ for linear
algebra are the rational numbers, i.e. our old friends the fractions of integers:

(1.1.1) Q =
{ a
b

∣∣ a, b ∈ Z, b 6= 0
}
.

Let us formalize the list of rules that those ‘scalars’ should verify in general.

1.1.2. Definition. A field is a triple (F,+, ·), often just written F, consisting of a
set F equipped with two operations + and ·, called addition and multiplication

F× F
+
// F F× F · // F

(a, b) � // a+ b (a, b) � // a · b

respectively, and satisfying the following ten axioms:

(F1) Associativity of addition: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F.
(F2) Zero: There is an element 0 ∈ F such that 0 + a = a = a+ 0 for all a ∈ F.
(F3) Commutativity of addition: a+ b = b+ a for all a, b ∈ F.
(F4) Opposite: For every a ∈ F there exists some b ∈ F such that a+ b = 0.

So far, we only discussed addition. (1) Let us add multiplication to the mix:

(F5) Associativity of multiplication: (a · b) · c = a · (b · c) for all a, b, c ∈ F.
(F6) One: There is an element 1 ∈ F such that 1 · a = a = a · 1 for all a ∈ F.
(F7) Commutativity of multiplication: a · b = b · a for all a, b ∈ F.
(F8) Distributivity: a · (b+ c) = a · b+ a · c for all a, b, c ∈ F.
(F9) Non-triviality: 0 6= 1.

So far, we have ‘usual rules’. (2) The most important axiom of a field is:

(F10) Invertibility: For every a ∈ F non-zero, there exists b ∈ F such that a · b = 1.

1 A pair (F,+) satisfying (F1)-(F4) is what one calls an abelian group. The group is called

abelian because of (F3).
2 A triple (F,+, ·) satisfying (F1)-(F8) is what one calls a commutative ring. The ring is

called commutative because of (F7). Axiom (F9) only excludes the trivial ring A = 0.
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8 1. VECTOR SPACES

1.1.3. Remark. Let a ∈ F be a fixed element of a field F. We know by (F4) that
there exists b ∈ F such that a+b = 0. Note that b+a = 0 as well by commutativity.
We claim that this b is unique. Indeed let b, b′ ∈ F be such that a + b = 0 and
a+ b′ = 0. Then compute b+ a+ b′. Technically, the latter means either side of

(b+ a) + b′ = b+ (a+ b′)

which agree by associativity. The left-hand side is 0 + b′ = b′ and the right-hand
side is b+0 = b. So b′ = b. (This uniqueness holds in any abelian group.) A similar
argument shows that the scalar 0 satisfying (F2) is unique.

1.1.4. Notation. The unique b satisfying a+ b = b+ a = 0 is called the opposite
of a and denoted −a. (Read “minus a”, not “negative a”, as −a can be positive,
as for F = R and a = −1; or F might have no positive and negative, as for F = C.)

1.1.5. Exercise. Let a ∈ F be a non-zero element in a field F. Show that the b ∈ F
such that a · b = 1 is unique.

1.1.6. Notation. Let a ∈ F be non-zero in a field. The unique b satisfying a ·b = 1
is called the inverse of a and denoted a−1. (Read “a inverse”.)

1.1.7. Exercise. Let F be a field. Prove the following:

(1) We have 0+0 = 0 and −0 = 0. In fact, 0 is the only solution x ∈ F of x+x = x.
(2) We have 1 · 1 = 1 and 1−1 = 1 and 1 is the only solution y ∈ F of y · y = y.
(3) For all a, b ∈ F, we have −(a+b) = (−a)+(−b) and −(a·b) = (−a)·b = a·(−b).
(4) For all a, b ∈ F, we have (a · b)−1 = (a−1) · (b−1).
(5) If a · b = 0 then either a = 0 or b = 0. Hence if ab = ac and a 6= 0 then b = c.

It is high time to give examples:

1.1.8. Example. When counting in a ‘normal’ way, the ‘first’ field we encounter
is the field of rational numbers Q of (1.1.1). Recall that the notation a

b refers to an

equivalence class, where we declare a
b = a′

b′ if ab′ = a′b, for any a, a′, b, b′ ∈ Z with
b 6= 0, b′ 6= 0. In particular, for any c 6= 0 in Z, we have a

b = ac
bc . Recall that we

multiply fractions very easily: a
b ·

c
d = ac

bd but that addition is slightly more tricky:

a

b
+
c

d
=
ad

bd
+
bc

bd
=
ad+ bc

bd
where we first put the fractions in the same denominator.

1.1.9. Exercise. Verify that the above (Q,+, ·) is indeed a field. Show that a
b 6= 0

if and only if a 6= 0. In that case, prove that (ab )−1 = b
a .

1.1.10. Remark. The more elementary triple (Z,+, ·) is an example of a commuta-
tive ring. It fails only (F10) in the list of Definition 1.1.2. Indeed, the element 2 ∈ Z
has no inverse. (The only two elements that admit an inverse are ±1.)

1.1.11. Remark. We shall often use the notation

N = {0, 1, 2, 3, . . .}
for the set of natural numbers. This set has addition and multiplication as in Z
but it is not a ring since 1 has no opposite in N. This set is nonetheless very
useful for enumerations, e.g. when discussing sequences (x0, x1, x2, . . .) = (xn)n∈N.
We are following here the ‘European’ tradition of starting the count with 0, for
people in Europe are born at 0 year old. American mathematicians often prefer the
convention {1, 2, 3, . . .}. We shall write N≥1 for the latter.
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1.1.12. Example. Arguably the most common field used in applications is the
field R of real numbers. A precise definition of R is not a banality. In a snapshot,
we often picture R as the real line

|··· |
−3

|
−2

|
−1

|0 |1 |2 |3 |···
R

|x //

But what does a real number x represented as above mean? It is between 1 and 2,
a little closer to 2, but what else? One can actually build R from Q by a process
called completion. One way to formalize this is as equivalence classes of Cauchy
sequences x = (xn)n∈N of rational numbers xn ∈ Q. A sequence is Cauchy if for
every ε > 0 arbitrary small in Q there exists a large enough index nε � 1 such that
−ε < x`−xm < ε for all larger indices `,m ≥ nε. Two sequences x and y are called
equivalent if x−y converges to zero in Q, in the usual sense. One can show that the
set of equivalence classes is a field, and we call it R. Examples of such sequences
are the stationary ones x = (a)n∈N for some fixed a ∈ Q (that is, xn = a for all n).
This defines an injection Q ↪→ R, so we identify the rational numbers as a subfield
of the real numbers

Q ⊂ R.

One can show that this inclusion is far from an equality: There are way more
irrational real numbers than rational ones. Indeed, Q is countable (in bijection
with N) whereas R is not.

Alternatively, one can construct R as the set of so-called ‘cuts’ in Q. A ‘cut’
is a pair (A,B) where Q = A ∪ B, A ∩ B = ∅, A,B 6= ∅ and A is closed under
taking strictly small numbers (if a ∈ A and a′ ∈ Q is such that a′ < a then
a′ ∈ A) whereas B is closed under taking greater or equal numbers (if b ∈ B and
b′ ∈ Q is such that b ≤ b′ then b′ ∈ B). After the fact, we understand those cuts
as follows. Pick x ∈ R and define Ax =

{
a ∈ Q

∣∣ a < x
}

=] − ∞, x[ ∩Q and

Bx =
{
b ∈ Q

∣∣x ≤ b} = [x,∞[ ∩Q the complement. The cut (Ax, Bx) corresponds
to x ∈ R. The point is that conversely, any cut in Q defines a unique x ∈ R. This
approach is perhaps more elementary than Cauchy sequences and explains how R
‘fills in all the holes in Q’.

In analysis, R is useful for the above completeness property and the conse-
quences for Cauchy sequences (they converge) and continuous functions (the Inter-
mediate Value Theorem). There are notoriously useful real numbers like π and e.

For linear algebra, one could argue that R is somewhat imperfect, as it contains
some roots, like

√
2 that is not rational, but not all roots. Indeed, R misses exactly

the roots of negative numbers, most famously
√
−1. Creating a new imaginary

world in which the latter exists leads us to the next example.

1.1.13. Exercise. Equip R2 =
{

(x, y)
∣∣x, y ∈ R

}
with the following operations

(x, y) + (x′, y′) = (x+ x′, y + y′) and (x, y) · (x′, y′) = (xx′ − y y′ , x y′ + y x′).

(1) Show that this defines a field, with 0 = (0, 0) and 1 = (1, 0).
(2) Show that i := (0, 1) satisfies i2 = −1.
(3) Show that every element z = (x, y) in this field can be written as

z = (x, 0) + (y, 0) · i

and that the subset
{

(x, 0)
∣∣x ∈ R

}
with the above operations is the same as

the field R with its usual operations.
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1.1.14. Example. In view of the above exercise, one usually defines the field of
complex numbers as

C =
{
x+ y i

∣∣x, y ∈ R
}

whose elements are given by pairs of real numbers (x, y), formally written x + y i
for an ‘imaginary’ number i, with x the ‘real part’ and y the ‘imaginary part’. The
operations are forced by associativity, commutativity and distributivity and one
extra rule that breaks our real intuition:

i2 = −1.

In particular, multiplication becomes

(x+ y i) · (x′ + y′i) = (xx′) + (xy′ + yx′) i+ (yy′) i2 = (xx′ − yy′) + (xy′ + yx′) i

recovering Exercise 1.1.13. The part y = 0 identifies with R so we write

R ⊂ C.

The difference is of course that i /∈ R. (While, as sets, R and C have same cardinal.)

There are also amusing little fields. At first, we might think that these other
fields just appear because Definition 1.1.2 is imperfect. After all, we gave a list
of axioms; every (F,+, ·) satisfying those axioms must now be accepted as a field!
Upon further investigation, these fields are interesting in their own right and play
a very important role in algebra, notably in number theory.

1.1.15. Example. Let p ∈ N be a prime number, i.e. one that admits exactly two
divisors 1 and p. The first primes are 2, 3, 5, 7, 11, 13, . . .. Consider the set with p
elements written with the following decoration

Fp = {0̄, 1̄, . . . , p− 1} =
{
ī
∣∣ 0 ≤ i < p

}
.

For instance F2 = {0̄, 1̄}, F3 = {0̄, 1̄, 2̄}, . . . , F13 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄, 1̄0, 1̄1, 1̄2},
etc. Let us define operations on Fp as follows: Add and multiply as in Z (without
the decoration )̄ and if the result is larger than p, reduce modulo p. For instance,
in F13 we have 3̄ + 4̄ = 7̄ but 8̄ + 9̄ = 1̄7 = 4̄ since 17 = 13 + 4 ≡ 4 modulo 13. Still
in F13, we have 6̄ · 8̄ = 4̄8 = 9̄ since 48 = 39 + 9 ≡ 9 modulo 13.

The formal definition is that Fp is the set of equivalence classes Z/p of inte-
gers i ∈ Z modulo p, that is, under the equivalence relation i ∼ j if i− j is divisible
by p. This requires a few verifications that we omit.

1.1.16. Exercise. Show that Fp is a field, with 0Fp = 0̄ and 1Fp = 1̄. [Do this at
least for p = 2, 3.] In F7, compute the inverse of every non-zero element.

1.1.17. Remark. As the notation Z/p suggests, one can similarly define Z/n for
any n and obtain a commutative ring. Declare i ∼ j if n divides i − j and let
Z/n = Z/ ∼ be the set of equivalence classes. If we write ī =

{
i+ kn

∣∣ k ∈ Z
}

for

the equivalence class of i then the operations are very easy to describe: ī+ j̄ = i+ j
and ī · j̄ = i j. One only needs to check that they make sense.

Such a ring Z/n will be a field if and only if n is prime. For instance, if n = 6,
we have 2̄ · 3̄ = 6̄ = 0 in Z/6 although 2̄ 6= 0 and 3̄ 6= 0. Compare Exercise 1.1.7 (5).

1.1.18. Remark. Those fields like Fp feel quite different from the usual Q ⊂ R ⊂ C.
The notable difference is that if you add 1F = 1̄ with itself p times in Fp you get
zero: 1F + 1F + · · ·+ 1F = 0 whereas this would never happen in Q and beyond.
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Fields where n ·1F = 1F + 1F + · · ·+ 1F (sum of n terms) is never zero for n > 0
are called characteristic zero fields (n = 0 being the only solution to n · 1F = 0).

If your field F has the property that n · 1F = 0 for some n > 0, then you
can prove that the smallest such n is a prime number p and that all solutions
of n · 1F = 0 are the multiples of p, as is the case in Fp. Indeed, let p > 0 be the
smallest integer n > 0 such that n · 1F = 0 in F. If p = a · b in Z with a, b > 0
then (a · 1F) · (b · 1F) = p · 1F = 0 and F being a field forces one of (a · 1F) or
(b · 1F) to be zero in F by Exercise 1.1.7. As p was the smallest such that p · 1F = 0
and as a, b ≤ p, the property (a · 1F) = 0 would force a = p and therefore b = 1,
and similarly the property (b · 1F) = 0 would force b = p and therefore a = 1.
In short, we have shown that p is prime number: p has only 1 and p as divisors.
The argument to show that all other n such that n · 1F = 0 are multiples of that
smallest p is direct from Euclidean division: Write n = q · p + r with 0 ≤ r < p.
We have 0 = n · 1F = q · p · 1F + r · 1F = q · 0 + r · 1F. But r < p so it cannot be
non-zero otherwise p would not be the smallest. So r = 0, that is, p divided n.

In that situation, that is, when p · 1F = 0 for a prime p, the field F is called of
characteristic p.

In summary, every field has a characteristic, a prime p > 0 or zero, depending
on whether

{
n ∈ Z

∣∣n ·1F = 0
}

is p ·Z or {0}. We write char(F) = p or char(F) = 0

respectively. (3)

1.2. Vector spaces

For the entire section, F is a fixed field, called the ‘ground field’. The elements
of F are called scalars. In first approximation, the reader can think only of one of
the three standard fields Q ⊂ R ⊂ C.

The fundamental notion of linear algebra is that of ‘vector space’. Its impor-
tance lies in the large catalogue of examples of vector spaces that appear throughout
algebra and analysis. We give several of the most elementary examples after the
definition and many more in the next sections.

1.2.1. Definition. A vector space over F (or F-vector space) is a triple (V,+, ·)
consisting of a set V equipped with two operations

V × V +
// V F× V · // V

(x, y) � // x+ y (a, x) � // a · x

satisfying Axioms (VS1)-(VS8) below. The first operation (addition) is internal
to V . The second operation involves both V and the field F; it is called the (scalar)
action of F on V . To be clear, the latter means that we assign an element denoted
a · x in V to every choice of a ∈ F and x ∈ V . The first four axioms do not involve
the action (4):

(VS1) Associativity of addition: (x+ y) + z = x+ (y + z) for all x, y, z ∈ V .
(VS2) Zero vector: There exists 0 ∈ V such that 0 + x = x = x+ 0 for all x ∈ V .
(VS3) Commutativity of addition: x+ y = y + x for all x, y ∈ V .
(VS4) Opposite: For every x ∈ V there exists some y ∈ V such that x+ y = 0.

3 A finite field must have positive characteristic. You will learn later that there are finite

fields other than the Fp. And a field of characteristic p does not have to be a finite field.
4 As in Definition 1.1.2, the first four axioms are saying that (V,+) is an abelian group.
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Then the action of F comes in and should be compatible with addition:

(VS5) Associativity of action: (a · b) · x = a · (b · x) for all a, b ∈ F and x ∈ V .
(VS6) Action of one: 1 · x = x for all x ∈ V .
(VS7) Distributivity (right): a · (x+ y) = a · x+ a · y for all a ∈ F and x, y ∈ V .
(VS8) Distributivity (left): (a+ b) · x = a · x+ b · x for all a, b ∈ F and x ∈ V .

We often just write V instead of (V,+, ·) and we shall soon write a x instead of a ·x.
By definition, a vector is simply an element of a vector space, i.e. any x in V .

1.2.2. Definition. A real vector space is a vector space over the field F = R of real
numbers. A complex vector space is one over the field F = C of complex numbers.

1.2.3. Remark. As in Remark 1.1.3, given a vector x ∈ V , the y ∈ V satisfy-
ing (VS4) is unique. We call it the opposite of x and write it −x.

1.2.4. Remark. Let us not mix up the two zeros discussed so far. If necessary,
the zero of the field F, from (F2), can be denoted 0F whereas the zero of the vector
space V , from (VS2), can be denoted 0V . They are related in the obvious way:

1.2.5. Exercise. Let V be a vector space over F. Show the following:

(1) We have 0F · x = 0V for all x ∈ V .
(2) We have (−1) · x = −x for all x ∈ V . (In fact, Axiom (VS4) is superfluous.)
(3) If a · x = 0V for x ∈ V and a ∈ F then either a = 0F or x = 0V . Similarly, if

a ∈ F is non-zero and x, y ∈ V satisfy a · x = a · y then x = y.

Let us discuss examples. The smallest vector space is:

1.2.6. Example. Let V = {0} be the set with only one element. Then V is a
vector space with the only possible addition and multiplication (0 + 0 = 0 and
a · 0 = 0 for all a ∈ F). Axioms (VS1)-(VS8) amount to check 0 = 0 many times.

1.2.7. Exercise. Why can’t we take any non-empty set V , pick some element
0 ∈ V and define the operations as x + y = 0 and a · x = 0 for all x, y ∈ V and
all a ∈ F? Which of the axioms would hold and which ones would fail?

1.2.8. Example. The reader pondering the resemblance between the axioms for a
field (Definition 1.1.2) and for a vector space (Definition 1.2.1) might be helped, or
confused further, by the case where we take V = F and use as action the multipli-
cation of F. Then Axioms (VS1)-(VS8) are actually a subset of Axioms (F1)-(F10).

It might be easier to see the above example as the case n = 1 of the following
more general class of examples. Indeed, F = F1 is the line over F and we can speak
of n-space Fn for any n ≥ 1.

1.2.9. Example. The classical example from introductory linear algebra is n-
space V = Fn for some n ≥ 1. (You might have seen this only for F = R, or for
n = 2 and 3, i.e. for Euclidean plane and space.) The set V is that of n-tuples

Fn =
{
x = (x1, x2, . . . , xn)

∣∣x1, . . . , xn ∈ F
}
.

Addition and scalar action are defined componentwise, meaning:

(+) (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1 , x2 + y2, . . . , xn + yn)
(·) a · (x1, x2, . . . , xn) = (a · x1 , a · x2, . . . , a · xn)

for all vectors (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Fn and all scalars a ∈ F. For the
action, the ‘inner’ expressions a · xi on the right-hand side refer to multiplication
in the field F. So the action of F on V = Fn relies on the multiplication in F.
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1.2.10. Notation. It is sometimes more convenient to write the elements of Fn

in columns

 x1

...
xn

, in particular when we do matrix multiplication. This writing

artifice has no deep meaning but should not be used to create (or hide) confusion.

1.2.11. Exercise. Verify that the above (Fn,+, ·) is indeed an F-vector space.

1.2.12. Exercise. Refresh your geometric understanding: Pick two vectors in R2,
draw them on the plane and add them. Do the same exercise with scalar action.

We can generalize the above.

1.2.13. Notation. Let I be a set (of ‘indices’). Let

FI =
{
f : I → F

∣∣ f is a function
}

be the set of all functions f : I → F. We shall make FI into a vector space over F.
Let us emphasize: One vector in this (possible very big) vector space FI will be
a function from the set I to our field F. We add functions and multiply them by
scalars (‘constants’) in the usual way:

(+) For every two functions f, g ∈ FI we define the function (f + g) ∈ FI , that
is, f + g : I → F, by the formula (f + g)(i) = f(i) + g(i) for all i ∈ I:

(f + g) : I // F

i
� // f(i) + g(i).

(·) For every function f ∈ FI and scalar a ∈ F, we define the function (a ·f) ∈
FI , that is, a · f : I → F, by the formula (a · f)(i) = a · f(i) for all i ∈ I:

(a · f) : I // F

i � // a · f(i).

In both cases, the explicit formulas involve the operations + and · in the field F.

1.2.14. Exercise. Verify that FI is an F-vector space with the above operations.

There are two elementary prototypes of the above construction FI .

1.2.15. Example. First, for n ≥ 1 and the indexing set I = {1, 2, . . . , n}, the
vector space FI is nothing but our old friend Fn. Indeed, to give a function
f : {1, 2, . . . , n} → F is simply to give the n-tuple (f(1), f(2), . . . , f(n)). [In fact, if
you try to define ‘tuples’ carefully, this is the definition!] The operations + and ·
on functions amounts exactly to the componentwise operations of Example 1.2.9.

1.2.16. Example. Secondly, if I = N then the vector space FI is that of sequences
in F. Again, the data of a function f : N = {0, 1, 2, . . .} → F consists exactly
of the data of a sequence of scalars f(0), f(1), f(2), . . . that we usually denote
x0, x1, x2, . . . or (xi)i∈N setting xi = f(i) for every index i. Some sources will have
special notation for the F-vector space of sequences in F but we simply write FN.

1.2.17. Example. Here is a mildly silly variation on the above theme. Let p, q ≥ 1
and take I =

{
(i, j) ∈ N×N

∣∣ 1 ≤ i ≤ p , 1 ≤ j ≤ q
}

the set of pairs of indices (i, j)
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that we use to describe the entries of a (p× q)-matrix. Then FI is precisely the set

Mp×q(F) =
{ ( a1,1 ··· a1,q

...
. . .

...
ap,1 ··· ap,q

) ∣∣ ai,j ∈ F, for all 1 ≤ i ≤ p , 1 ≤ j ≤ q
}

of p× q matrices with entries in F. As before, we just need to write the data of the
function I → F as a table with p rows and q columns and ai,j = f(i, j) in the i-th
row and j-th column. For instance, for p = 2 and q = 3 then

FI =
{ ( f(1,1) f(1,2) f(1,3)

f(2,1) f(2,2) f(2,3)

) ∣∣ f : I → F
}
.

This example is just a rearrangement of Fn from Example 1.2.9 with n = pq. Again,
it gives the usual addition and scalar multiplication of matrices.

So we have already lots of examples, inside linear algebra. But there are more
examples of vector spaces of the form FI in analysis, where one uses such spaces of
functions for I even bigger than the above N.

1.2.18. Example. Let us take the ground field to be F = R the real numbers. If we
take I = R then FI = RR is the set of all functions f : R → R. Alternatively, if we
take I = [a, b] an interval, with a < b, then our space FI = R[a,b] becomes the space
of functions f : [a, b]→ R. The addition and scalar multiplication of Notation 1.2.13
are the ‘usual’ addition of functions and multiplication of a function by a scalar (a
constant function).

Of course, in complex analysis, one would replace R by C and construct similar
spaces CX for many possible X, like a piece of the complex plane for instance. Such
variations are limitless.

In both cases, one is often interested in continuous functions, or differentiable
functions, holomorphic ones, etc. We return to this in the next section.

1.2.19. Remark. Saying that the function set FI is a vector space does not keep
track of another operation, namely the usual multiplication of functions, given by
(f · g)(i) = f(i) · g(i) for all i ∈ I. In fact, FI is what one calls an F-algebra: both
an F-vector space and a ring, in a compatible way.

In light of the previous remark, we do not need our functions f to land in the
ground field F. In fact any vector space would suffice:

1.2.20. Exercise. Let V be an F-vector space and I be a set. Define an ‘obvious’
structure of F-vector space on V I , the set of functions f : I → V from I to V .

Let us give one more class of examples, coming from algebra.

1.2.21. Definition. Recall that a polynomial in a variable X, with coefficients in
a field F, consists of an expression of the form

(1.2.22) P (X) = a0 + a1X + a2X
2 + · · ·+ anX

n =

n∑
i=0

aiX
i

where n ∈ N and a0, a1, . . . , an ∈ F. (Note that X0 is omitted, that is, we read
X0 = 1.) We do not think of P (X) as a function of X but as a way to record
the n + 1 scalars a0, . . . , an. Note that the number n is not fixed, nor capped in
advance. To be precise, we identify the following two expressions for any m > n

a0 + a1X + · · ·+ anX
n = a0 + a1X + · · ·+ anX

n + 0Xn+1 + · · ·+ 0Xm
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that is, we ignore the top terms as long as their coefficient is zero. If an 6= 0, we
say that the polynomial P as in (1.2.22) has degree n and write deg(P ) = n. The
set of all polynomials, for all possible degrees, is denoted

F[X] =
{
a0 + a1X + a2X

2 + · · ·+ anX
n
∣∣n ∈ N and a0, a1, . . . , an ∈ F

}
.

1.2.23. Exercise. Show that the usual addition of polynomials and the obvious
F-action given by b ·

(∑n
i=0 aiX

i
)

=
∑n
i=0(b · ai)Xi define a structure of F-vector

space on F[X].

1.2.24. Remark. We emphasize that the variable X plays no real role in the
above vector space structure. It is simply a way to ‘distinguish’ ai from aj for
i 6= j. The mathematical reason for the variable X comes in the multiplication
of polynomials, where we use the obvious distributivity and commutativity rules
together with Xi ·Xj = Xi+j , resulting in the not entirely obvious multiplication( m∑

i=0

aiX
i
)
·
( n∑
j=0

bjX
j
)

=

m+n∑
k=0

( ∑
i+j=k

ai · bj
)
Xk.

But we do not use multiplication of polynomials for the moment.

There are also abstract way of producing new vector spaces out of old ones.

1.2.25. Exercise. Let V1 and V2 be two vector spaces over the same field F. Denote
by V1 ⊕ V2 the cartesian product V1 × V2

V1 × V2 =
{

(x1, x2)
∣∣x1 ∈ V1, x2 ∈ V2

}
with the componentwise addition (x1, x2) + (y1, y2) = (x1 + y1 , x2 + y2) and scalar
multiplication a · (x1, x2) = (a · x1 , a · x2). Show that this is still a vector space
over F. It is called the (external) direct sum of V1 and V2 and denoted

V1 ⊕ V2.

1.2.26. Remark. This operation can be repeated (and is associative), to define
the direct sum

V1 ⊕ V2 ⊕ · · · ⊕ Vn
of any number of vector spaces V1, . . . , Vn over the same field F. It consists of n-
tuples (x1, . . . , xn) where each xi is a vector in Vi, with componentwise operations.

1.3. Subspaces

As before, F is a fixed ground field.

In the previous section, we saw many examples of vector spaces. However,
most of them look essentially like FI for a set I. One big strength of the concept of
vector space is the ability to handle new vector spaces that appear inside a given
one, even if the given one appear ‘easy’, like FI . For instance, if you think of the
usual Euclidean space V = R3 then there are many planes in it. The ‘obvious’ ones
containing two of the three axes, R× R× {0}, R× {0} × R and {0} × R× R, which
are essentially just R2 in disguise. But there are many more, in many directions,
like the solutions (x1, x2, x3) of ax1 + bx2 + cx3 = 0 for a, b, c 6= 0. Such a plane
in R3 is also a vector space in its own right, even if it is not R2 in a naive way.

1.3.1. Definition. Let V be a vector space over F. A subspace is a subset W ⊆ V
satisfying the following three axioms:
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(SS1) 0 ∈W .
(SS2) W + W ⊆ W , meaning that whenever two vectors x, y ∈ W belong to our

subset, their sum x+ y (in V ) still belongs to our subset: x+ y ∈W .
(SS3) F ·W ⊆ W , meaning that whenever a vector x ∈ W belongs to our subset,

every scalar multiple a · x (in V ) still belongs to our subset: a · x ∈ W for
all a ∈ F.

1.3.2. Remark. Before giving examples, let us make one comment. Axiom (SS1)
simply says that W cannot be taken empty. Indeed, in the presence of (SS3) if
x ∈ W then 0 · x ∈ W , which gives (SS1). However, to do that, we need at least
some x ∈W . The subset ∅ ⊂ V would satisfy (SS2) and (SS3) but not (SS1).

There are always two trivial subspaces, whose verification is very easy:

1.3.3. Example. For any vector space V , the subset {0} is a subspace.

1.3.4. Example. For any vector space V , the subset V itself is a subspace.

1.3.5. Exercise. In V = F1, there are only the above two subspaces.

1.3.6. Example. In your introductory linear algebra, you surely saw, and perhaps
proved, the following two facts (that we shall prove again later):

(1) In the real vector space R2, there are three types of subspaces: {0}, lines L ⊂ R2

through the origin, and R2 itself.
(2) In the real vector space R3, there are four types of subspaces: {0}, lines through

the origin, planes through the origin, and R3 itself.

1.3.7. Exercise. Let A ∈ Mp×q(F) be a matrix. Think of Fq as column vectors.
Show that Ker(A) =

{
x ∈ Fq

∣∣A · x = 0
}

is a subspace of Fq.

1.3.8. Remark. The above says that the solutions of a homogeneous (meaning
whose constant terms are zero) system of p equations in q variables x1, . . . , xq

a11 x1 + a12 x2 + · · · + a1q xq = 0
a21 x1 + a22 x2 + · · · + a2q xq = 0

...
...

...
...

ap1 x1 + ap2 x2 + · · · + apq xq = 0

defines a subspace of Fq, no matter how the matrix of coefficients A = (aij)i,j ∈
Mp×q(F) is chosen.

There are many examples of such ‘linear conditions’, sometimes less explicit.

1.3.9. Exercise. Let n ≥ 1 and consider the F-vector space V = Mn×n(F) of
square matrices of size n in F, as in Example 1.2.17. Prove that the following are
subspaces or give an explicit counter-example to one of the Axioms (SS1)-(SS3).

(1) The subset of symmetric matrices
{
A ∈ Mn×n(F)

∣∣At = A
}

where At denotes
the transpose (At)ij = Aji.

(2) The antisymmetric (or skew-symmetric) matrices
{
A ∈ Mn×n(F)

∣∣At = −A
}

.

(3) The upper-triangular matrices
{
A ∈ Mn×n(F)

∣∣Aij = 0 for all i > j
}

.

(4) The diagonal matrices
{
A ∈ Mn×n(F)

∣∣Aij = 0 for all i 6= j
}

.

(5) The strictly lower-triangular matrices
{
A ∈ Mn×n(F)

∣∣Aij = 0 for all i ≤ j
}

.
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(6) The orthogonal matrices
{
A ∈ Mn×n(F)

∣∣At ·A = In
}

, where In is the identity
(n× n)-matrix In = (δij)ij using the Kronecker symbol of Notation A.1.1.

The following observation is simple but important:

1.3.10. Proposition. Let W ⊆ V be a subspace of a vector space over F. Then W
is itself a vector space over the same field F, with the operations inherited from V .

Proof. By (SS2) and (SS3) we can define x + y and a · x for all x, y ∈ W
and a ∈ F the way they are defined in V . The point being that the output still
belongs to W . So, for instance, the sum is not an operation W × W → V but
really W ×W → W . Axioms (VS1)-(VS8) are easy to prove: For each of them,
some equality must be verified in W . Each such equality makes sense because
W is a subspace. And it holds true because it does in V . Only Axiom (VS2)
and (VS4) require the existence of some vector in W , respectively the existence of
zero, which is guaranteed by (SS1), and the existence of the opposite that follows
from −x = (−1) ·x and (SS3). Details are left as a good exercise for beginners. �

To see examples of subsets that are not subspaces, we can of course use the
ones we learned in Euclidean plane.

1.3.11. Example. The subset W =
{

(x, y) ∈ R2
∣∣x, y ≥ 0

}
is not a subspace of

real R2. [Draw a picture.] Indeed, it satisfies (SS1) and (SS2) but not (SS3) for
negative scalars: (−1) · (1, 1) = (−1,−1) is out of W although (1, 1) ∈W .

1.3.12. Example. The subset W =
{

(x, y) ∈ R2
∣∣x · y = 0

}
is not a subspace of

real R2. [Draw a picture.] Indeed, it satisfies (SS1) and (SS3) but not (SS2). For
instance (1, 0) + (0, 1) = (1, 1) is out of W although (1, 0) and (0, 1) belong to W .

1.3.13. Exercise. Fix d ∈ N and consider V = F[X] the F-vector space of polyno-
mials in one variable X. Show that the subset W =

{
P ∈ F[X]

∣∣ deg(f) ≤ d
}

of
polynomials of degree at most d (including P = 0) is a subspace of V . Show that
the polynomials of degree exactly d do not form a subspace.

1.3.14. Example. Let a < b in R and V = R[a,b] = {f : [a, b]→ R} the real vector
space of functions from the interval [a, b] to R. Then W =

{
f ∈ V

∣∣ f is contnuous
}

is a subspace of V . Indeed, the zero function is continuous, the sum of continuous
functions remains continuous and multiplying a continuous function by a constant
gives another continuous function.

A very important example of (sub)space is the following:

1.3.15. Example. Let I be a set and consider the subset of FI (Notation 1.2.13)
of those functions f : I → F that are zero almost everywhere, i.e. except for finitely
many ‘indices’ i ∈ I. Formally, we let

F(I) =
{
f ∈ FI

∣∣ the set
{
i ∈ I

∣∣ f(i) 6= 0
}

is finite
}
.

For instance, if I is finite, there is no condition. In formula, F(I) = FI when I is
finite. When I is infinite, the two are different, as for instance non-zero constant
functions belong to FI but not to F(I).

1.3.16. Exercise. Verify that F(I) is a subspace of FI .

1.3.17. Definition. The above F-vector space F(I) is called the free vector space
on the set I (or on the ‘basis’ I).
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1.3.18. Example. For instance, for I = N, the free vector space F(N) consists of
sequences a = (ai)i∈N of scalars such that there exists n (depending on a) such
that ai = 0 for all i > 0. Let me repeat: The n can vary for different vectors a.
Giving such a vector a = (a0, a1, . . . , an, 0, 0, . . .) is the same information as giving
a polynomial a0 + a1X + · · · + anX

n. As an exercise, the reader should compare
the addition and F-actions on F(N) and F[X] under this identification. (We shall
make more precise sense of such ‘identifications’ in Chapter 2.)

1.3.19. Exercise (Operations on subspaces). Let {Wi}i∈I be a collection of sub-
spaces of an F-vector space V . Consider their intersection, and their union.

(1) Show that ∩i∈IWi =
{
v ∈ V

∣∣ v ∈Wi for all i ∈ I
}

is still a subspace of V .

(2) Show that ∪i∈IWi =
{
v ∈ V

∣∣ v ∈ Wi for some i ∈ I
}

is not a subspace of V
in general. Give a counterexample already for two subspaces.

(3) Suppose that we have only finitely many indices I = {1, 2, . . . , n}. Show that

W1 +W2 + · · ·+Wn =

n∑
i=1

Wi :=
{ ∑
i∈I

wi
∣∣wi ∈Wi

}
is a subspace of V , which is the smallest subspace containing Wi for all i ∈ I.

(4) Describe W1 +W2 in an example where W1 ∪W2 is not a subspace; see (2).
(5) Construct

∑
i∈IWi satisfying the conclusion of (3) when I is infinite.

1.4. Linear combinations and span

The following basic notion will accompany us throughout the course.

1.4.1. Definition. Let V be an F-vector space. Let x1, . . . , xn ∈ V be n vectors
(repetition and n = 0 allowed). A linear combination of x1, . . . , xn is any vector
in V of the form

a1 x1 + · · ·+ an xn =

n∑
i=1

ai xi

for any choice of n scalars a1, . . . , an ∈ F. [The right-hand side is just a short of the
left-hand side.] Let me repeat: To say that a vector v ∈ V is a linear combination
of some given x1, . . . , xn means that you can find a1, . . . , an ∈ F such that when
you compute a1 x1 + · · ·+ an xn you find v. By convention, when n = 0, the empty
sum means 0. (5)

1.4.2. Exercise. Let x1 = (1, 2, 3) and x2 = (4, 5, 6) in R3. Show explicitly that
v = (7, 8, 9) is a linear combination of x1 and x2.

1.4.3. Proposition. Let W ⊆ V be a subset of an F-vector space V . The following
are equivalent:

(i) W is a subspace of V (Definition 1.3.1).
(ii) W is closed under forming linear combination: For every n ≥ 0 and for every

x1, . . . , xn ∈W and every a1, . . . , an ∈ F we have a1 x1 + · · ·+ an xn ∈W .

5 Suppose nobody gives you money. How much do you receive? So indeed
∑
∅

= 0.
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Proof. Suppose (i) and let us prove (ii). The case n = 0 is (SS1). For n ≥ 1,
given x1, . . . , xn ∈W and a1, . . . , an ∈ F, we have aixi ∈W for all i by (SS3). Since
W is closed under finite sums, by (SS2) and induction on n (see Exercise C.3.2),
we conclude that a1x1 + · · ·+ anxn ∈W .

The converse (ii)⇒(i) is easy: Axioms (SS1)-(SS3) are special cases of (ii). �

We can generalize to an infinite collection of vectors G, but with some care
since infinite sums

∑
g∈G ag · g are not allowed.

1.4.4. Definition. Let G ⊆ V be a set of vectors in a fixed F-vector space V . We
say that v ∈ V is a linear combination of vectors in G if there exist n ≥ 0 and
x1, . . . , xn ∈ G and a1, . . . , an ∈ F such that a1 x1 + · · ·+ an xn = v. We denote by

Span(G) =
{
v ∈ V

∣∣ v is a linear combination of vectors in G
}

=
{
a1 x1 + · · ·+ an xn

∣∣n ∈ N, a1, . . . , an ∈ F and x1, . . . , xn ∈ G
}

the subset of all linear combinations of vectors in G. We call it the subset spanned
by G or generated by G. By convention Span(∅) = {0}, following the rule that an
empty sum is zero.

1.4.5. Remark. It is clear that if G ⊆ G′ then by definition Span(G) ⊆ Span(G′).

1.4.6. Exercise. Give an example of F-vector space V and two (finite) subsets G
and G′ of V such that Span(G) ⊆ Span(G′) and yet G is not contained in G′. Even
give an example where G has strictly more elements that G′.

1.4.7. Proposition. For any G ⊆ V the subset Span(G) is a subspace of V . More
precisely, Span(G) is the smallest subspace of V that contains G: If W ⊆ V is a
subspace that contains a set G then W also contains its span: Span(G) ⊆W .

Proof. For (SS1), we have 0 ∈ Span(G) by convention (case n = 0). The
subset Span(G) clearly satisfies (SS2) since the sum of two linear combinations

a1 x1 + · · ·+ an xn + b1 y1 + · · ·+ bm ym

is just another (longer) linear combination of n+m vectors x1, . . . , xn, y1, . . . , ym.
Similarly, Span(G) satisfies (SS3) since a scalar multiple of a linear combination

b ·
n∑
i=1

ai xi =

n∑
i=1

(b · ai)xi

is just another linear combination of the same n vectors x1, . . . , xn. And clearly
G ⊆ Span(G) since v = 1 · v, for any v ∈ G, that is, for n = 1 and a1 = 1 and
x1 = v. In summary, Span(G) is indeed a subspace of V that contains G.

Let now W be any subspace of V containing G and let us show that it con-
tains Span(G). We need to show that any linear combination of vectors x1, . . . , xn
in G still belongs to W . This is immediate from Proposition 1.4.3. �

1.4.8. Exercise. With notation as in Proposition 1.4.7, show that Span(G) is the
intersection of all subspaces W of V that contain G:

(1.4.9) Span(G) =
⋂

W subspace of V
such that G⊆W

W.
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Proposition 1.4.7 gives us an abundance of subspaces: Pick any subset G ⊆ V at
random and look at what it spans. There is possibly a massive ‘waste’ in this opera-
tion, as one easily realizes. For instance, Span(R3) = R3 but Span({e1, e2, e3}) = R3

as well for the usual canonical basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
So different G’s can span the same subspace, some much smaller than others. In
particular, adding to G a vector that is already spanned by G will not make the
spanned subspace any bigger. And the converse is true:

1.4.10. Proposition. Let V be an F-vector space. Let G′ and G′′ be two subsets
of V . Then the following are equivalent.

(i) G′ and G′ ∪G′′ span the same subspace: Span(G′) = Span(G′ ∪G′′).
(ii) Every vector v in G′′ is already a linear combination of elements of G′, that

is, G′′ ⊆ Span(G′).

Proof. Suppose (i). Then G′′ ⊆ G′ ∪G′′ ⊆ Span(G′ ∪G′′) = Span(G′) by (i).
Suppose (ii). So Span(G′) contains G′′, and it always contains G′, hence it

contains the set G = G′ ∪G′′. By Proposition 1.4.7, applied to the subspace W =
Span(G′) and the set G, we see that Span(G′) must contain the span of G, which
reads Span(G′∪G′′) ⊆ Span(G′). As the other inclusion Span(G′) ⊆ Span(G′∪G′′)
is obvious (see Remark 1.4.5), we get equality (i). �

1.4.11. Example. In the real vector space V = R3, we have by Exercise 1.4.2 that
Span

(
(1, 2, 3), (4, 5, 6)

)
= Span

(
(1, 2, 3), (4, 5, 6), (7, 8, 9)

)
.

Using Exercise 1.3.19, we can also treat the above as follows:

1.4.12. Exercise. Let G′, G′′ ⊆ V be subsets. Prove that Span(G′ ∪ G′′) =
Span(G′) + Span(G′′) where the right-hand side uses the notation W ′+W ′′ for the
two subspaces W ′ = Span(G′) and W ′′ = Span(G′′).

It is important to reverse the order of appearance: Sometimes we know a
subspace W and we look for a set G such that Span(G) = W . As subspaces are
vector spaces (Proposition 1.3.10), it suffices to understand this notion for V itself.

1.4.13. Definition. Let V be an F-vector space. We say that G ⊆ V is a set of
generators of V if Span(G) = V . Unpacking the meaning of Span(...), this means
that for every vector v ∈ V we can find some n ∈ N, some x1, . . . , xn ∈ G and some
a1, . . . , an ∈ F such that a1x1 + · · ·+ anxn = v.

1.4.14. Remark. Given W ⊆ V a subspace, a set of generators of W is a subset
G ⊆W such that Span(G) = W . Nothing mysterious: Just pay attention that the
generators g ∈ G cannot be taken outside W .

1.4.15. Remark. It is customary to speak of “a generator g” to mean some g ∈ G
when G is a given set of generators. Note however that the phrase “a generator g”
does not make sense on its own and should not be used to mean that there exists
some generating set G containing g. Indeed, we always have Span(V ) = V and
g ∈ V , so every g would be a generator. If one says that g alone is a generator
of V , without specifying a G, we mean that V = Span({g}) is a line (or zero).

Here is a silly observation but it is better to make it now rather than in the
middle of a more complicated proof.
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1.4.16. Lemma. Let G be a subset of an F-vector space V . Let v ∈ Span(G). Then
there exists a number m ≥ 0 and m vectors y1, . . . , ym ∈ G all distinct (meaning
yi 6= yj whenever i 6= j) and m scalars b1, . . . , bm ∈ F all non-zero such that
v = b1y1 + · · ·+ bmym.

Proof. This is almost the definition of Span(G) from Definition 1.4.4, which
says that we can write v as the linear combination v = a1x1 + · · · + anxn for
x1, . . . , xn ∈ G and a1, . . . , an ∈ F. We just need to arrange the xi to be distinct
and the ai to be non-zero. For instance, 4x+ 0y+ 5z−x is simply 3x+ 5z. Making
sure that all ai are non-zero is trivial: We can remove the term 0 · xi = 0 from
the linear combination. Similarly, if xi = xj for i 6= j we can regroup two terms
aixi + ajxj = (ai + aj)xi into one. By induction on the number of terms, we get
the statement. Note that we might have removed all terms in this process (only
when v = 0). But that is alright: that is why we allow m = 0 in the statement. �

1.5. Linear dependence and independence

Again, the field F is fixed for the entire section and so is the F-vector space V .
We saw in the previous section that Span(G) = Span(G′) can happen for very

different G and G′. We want to express what it means for G to be optimal in
that respect. This leads to the conceptual definition of linear dependence. We will
immediately rephrase this definition in the more traditional form, that readers are
used to. We temporarily stop using the letter G that reminded us of ‘generators’
as the subsets we discuss now do not have to generate the whole space.

1.5.1. Definition. Let L ⊆ V be a subset of an F-vector space. We say that L
is linearly dependent if there exists a strictly smaller L′ ( L such that Span(L) =
Span(L′). In other words, L spans whatever it spans (Span(L)) in a suboptimal
way: We can do as well with a strictly smaller L′ contained in L.

We say that L is linearly independent when it is not linearly dependent. This
means that L does not admit a proper subset L′ ( L with Span(L′) = Span(L).

1.5.2. Example. The empty subset L = ∅ is always linearly independent as it
has no proper subset anyway. Note that Span(∅) = {0} (by our convention).

1.5.3. Example. We also have Span({0}) = {0} and therefore L = {0} is linearly
dependent in any V : The smaller L′ = ∅ spans the same subspace! In fact, any L
that contains 0 is linearly dependent as Span(L) = Span(Lr {0}).

1.5.4. Notation. Recall that X rY means “the set of elements of X that are not
in Y ”. We shall use this simple notation several times below.

1.5.5. Example. Continuing our running Example 1.4.11, the three vectors x1 =
(1, 2, 3), x2 = (4, 5, 6), x3 = (7, 8, 9) form a linearly dependent set L = {x1, x2, x3}
in V = R3 since Span(L) = Span(L′) for L′ = {x1, x2}.

1.5.6. Example. Let us do a small variation to illustrate one point. Let x1, x2, x3

be as above and x4 = (1, 0, 0) for instance. Then Span(x1, x2, x3, x4) = V and
x1, . . . , x4 are linearly dependent. Indeed, V = Span(x1, x2, x4) = Span(x1, x3, x4) =
Span(x2, x3, x4) but not Span(x1, x2, x3) that is a plane. So L linearly dependent
does not mean that you can take any L′ ( L and span the same subspace. Beware
of quantifiers: “there exists” and “for all”!
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Here is the reformulation when expanding the meaning of Span(...).

1.5.7. Proposition. Let L ⊆ V be a subset of an F-vector space. The following
are equivalent:

(i) The set L is linearly dependent in V .
(ii) There exists a number n ≥ 1 and n distinct vectors x1, . . . , xn ∈ L and n

non-zero scalars a1, . . . , an ∈ F such that a1x1 + · · ·+ anxn = 0.

Proof. (i)⇒(ii): Let L′ ( L be a proper subset such that Span(L) = Span(L′).
Since the complement LrL′ is non-empty, we can pick v ∈ LrL′. Then v belongs
to L ⊆ Span(L) = Span(L′). By Lemma 1.4.16 for v ∈ Span(L′), we can write

v = b1y1 + · · ·+ bmym

for m ≥ 0 and m vectors y1, . . . , ym in L′ all distinct and m scalars b1, . . . , bm ∈ F
all non-zero. (We might have m = 0 but that is fine.) Rewrite the above as

1 · v + (−b1)y1 + · · ·+ (−bm)ym = 0.

This gives a relation as announced in (ii), for n = m + 1 ≥ 1, for the n vectors
v, y1, . . . , ym in L and for the n non-zero scalars 1,−b1, . . . ,−bm. Indeed, since the
y1, . . . , ym are all distinct, the only possible repetition among v, y1, . . . , ym would
be to have v = yi for some i but that is excluded since yi ∈ L′ and v /∈ L′.

(ii)⇒(i): This is the place where we use for the first time that F is a field! Sup-
pose that x1, . . . , xn ∈ L are all distinct and a1x1 +· · ·+anxn = 0 for a1, . . . , an ∈ F
all non-zero. Since n ≥ 1, our equation can be rewritten as

a1 · x1 = (−a2) · x2 + · · ·+ (−an) · xn =

n∑
i=2

(−ai) · xi.

Since a1 6= 0, we can divide this equation by a1 (multiply by a−1
1 ) and get

x1 = a−1
1 ·

n∑
i=2

(−ai) · xi =

n∑
i=2

(
− a−1

1 ai
)
· xi.

Whatever the coefficients on the right-hand side are, we just proved that x1 is a
linear combination of x2, . . . , xn. Since x1 is distinct from all of x2, . . . , xn, we
have shown that x1 is a linear combination of vectors x2, . . . , xn in Lr {x1}. This
reads {x1} ⊆ Span(L r {x1}). If we baptize L′ = L r {x1} and L′′ = {x1},
we have established that L′′ ⊆ Span(L′). By Proposition 1.4.10 this implies that
Span(L′) = Span(L′∪L′′). In our case, this means Span(Lr{x1}) = Span(L) since
L′ ∪ L′′ = (L r {x1}) ∪ {x1} = L. In summary, Span(L) can be spanned by the
strictly smaller subset L′ = Lr{x1}, which is the meaning of L linearly dependent
(Definition 1.5.1). Hence we proved (i). �

We can rewrite the above in the ‘traditional’ formulations of linear (in)de-
pendence that is sometimes so hard for some students to remember.

1.5.8. Corollary. Let n ≥ 1 and x1, . . . , xn be n distinct vectors in an F-vector
space V . Then the set {x1, . . . , xn} is linearly dependent if and only if there exists
a1, . . . , an ∈ Fn not all zero such that a1x1 + · · ·+ anxn = 0.

Proof. This is direct from Proposition 1.5.7 applied to L = {x1, . . . , xn}. �
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1.5.9. Remark. For the sake of beginners, let us make the above argument explicit.
There is one difference between Proposition 1.5.7 and Corollary 1.5.8. In (ii) of
the proposition, we say the a1, . . . , an are ‘all non-zero’ but in the corollary we
say that they are ‘not all zero’. This is of course different. But if you apply
Proposition 1.5.7 carefully to L = {x1, . . . , xn}, part (ii) only says that one can
find m ≥ 1 distinct vectors among {x1, . . . , xn}, perhaps not all of them, and a
linear combination of those m vectors with only non-zero coefficients that yields
zero. Such a linear combination can be expanded into a linear combination of all xi
by just taking ai = 0 for the other i. For instance, if n = 5 and m = 2 and we have
a2 ·x2 +a4 ·x4 = 0 with a2 6= 0 and a4 6= 0 then we also have a1 ·x1 + · · ·+a5x5 = 0
if we set a1 = a3 = a5 = 0. We then only know that the a1, a2, . . . , an are not all
zero (in our example, a2 and a4 remain non-zero) but we cannot say they are all
non-zero anymore.

Let us apply contraposition to Corollary 1.5.8:

1.5.10. Corollary. Let n ≥ 1 and x1, . . . , xn be n distinct vectors in an F-vector
space V . Then the set {x1, . . . , xn} is linearly independent if and only if the only
solution (a1, . . . , an) ∈ Fn of the equation a1x1+· · ·+anxn = 0 is the trivial solution
(a1, · · · , an) = (0, . . . , 0).

Proof. If P is equivalent to Q then ‘non-P’ is equivalent to ‘non-Q’. Let’s
do that to Corollary 1.5.8. Non-(linearly dependent) is (linearly-independent) by
definition. Easy. And the negation of being able to find (a1, . . . , an) ∈ Fn different
from (0, . . . , 0) such that a1x1 + · · ·+ anxn = 0 is, well, not being able to find such
a tuple. Of course the trivial tuple (a1, . . . , an) = (0, . . . , 0) is always a solution of
a1x1 + · · ·+ anxn = 0, so the statement becomes that this is the only solution. �

1.5.11. Example. By Example 1.4.11, the vectors x1 = (1, 2, 3) and x2 = (4, 5, 6)
and x3 = (7, 8, 9) are linearly dependent in V = R3, over F = R. Indeed, they
satisfy the non-trivial relation 1 · x1 + (−2) · x2 + 1 · x3 = 0.

Let us make the following easy observations:

1.5.12. Corollary. Let L1 ⊆ L2 be two subsets of an F-vector space V .

(1) If L1 is linearly dependent then the larger L2 is linearly dependent.
(2) If L2 is linearly independent then the smaller L1 is linearly independent.

Proof. Part (1) is direct from Proposition 1.5.7. Indeed, in that proposition
for L = L1, (i)⇒(ii) gives us n ≥ 1 distinct vectors x1, . . . , xn ∈ L1 and non-zero
scalars a1, . . . , an ∈ F such that

∑n
i=1 ai xi = 0. Those xi are also in L2. Using the

same Proposition 1.5.7 (ii)⇒(i) for L = L2 tells us that L2 is linearly dependent.
Part (2) is direct by contraposition: We saw in (1) that ‘L1 linearly dependent’

implies ‘L2 linearly dependent’. So ‘L2 not linearly dependent’ implies ‘L1 not
linearly dependent’. This is (2). �

1.5.13. Exercise. Let L ⊂ V be linearly independent, possibly infinite. Let G ⊆ V
be a generating set. Suppose that Span(L) 6= V . Show that there exists g ∈ G that
does not belong to L and such that L ∪ {g} remains linearly independent.
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1.6. Bases and dimension

We continue to have F a fixed ground field and for most purposes, V is an
F-vector space that is fixed as well.

We are going to prove our first important result about general vector spaces. It
involves the notion of basis, that combines the idea of generators (Definition 1.4.13)
and of linear independence (Definition 1.5.1 and Corollary 1.5.10).

1.6.1. Definition. Let V be an F-vector space. A basis B of V is a linearly
independent subset B ⊂ V that generates V . (We do not ask B to be a finite set.)

1.6.2. Remark. Unpacking the definitions in terms of Span(...) as in Defini-
tion 1.4.4, to say that B is a basis of V means two things:

(1) V = Span(B): Every vector in V is a linear combination of vectors in B.
(2) V 6= Span(L) for every L ( B: No proper subset of B generates V .

In other words, B generates the whole of V and does so in an optimal way.

1.6.3. Example. The F-vector space V = Fn, written in columns today, admits a
canonical (or standard) basis e1, . . . , en our old friends

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
...
0
1

 .
More precisely, the j-th entry of the vector ei is δij (Notation A.1.1). Indeed, every

vectors

[
a1
...
an

]
in Fn can be written as a1e1+· · ·+anen, hence Fn = Span(e1, . . . , en).

And if a1, . . . , an ∈ F satisfy a1e1 + · · ·+anen = 0 this equation reads

[
a1
...
an

]
=

[
0
...
0

]
and thus all ai = 0. In other words, e1, . . . , en are linearly independent.

We can generalize the above.

1.6.4. Exercise. Let I be a set. For every i ∈ I, define ei in FI to be the function

ei : I → F defined by ei(j) = δij =

{
1 if i = j
0 if i 6= j

for every j ∈ I. In another

formula (also to get used to the notation) here is the function ei

ei : I // F

j
� // δij .

Show that the vectors {ei}i∈I form a basis of the subspace F(I) of FI . That is,
{ei}i∈I is a basis of the free vector space on the set I of Definition 1.3.17.

Note that the {ei}i∈I do not form a basis of FI itself, when I is infinite. Give
a simple explicit example showing why.

1.6.5. Exercise. Show that {1, X,X2, . . .} =
{
Xi
∣∣ i ∈ N

}
is a basis of V = F[X].

1.6.6. Exercise. Show that {1, X − 1, X2− 1, . . .} = {1}∪
{
Xi− 1

∣∣ i ∈ N, i ≥ 1
}

is also a basis of V = F[X].
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1.6.7. Remark. You should remember the (infinitely) many bases that you con-
structed in R2 and R3 in introductory linear algebra. For instance, R3 has the

canonical basis {e1, e2, e3} but also the basis {
[

1
2
3

]
,
[

4
5
6

]
,
[

7
8
10

]
} for instance.

The questions we want to address are: First, does every vector space admit a
basis? And second, must two different bases have the same number of elements?

1.6.8. Proposition. Let V be an F-vector space that is generated by a finite set G.
Then V admits a finite basis B that is also a subset of G.

Proof. Let n = |G| be the number of elements of the finite set G. We proceed
by induction on n. To start, suppose that n = 0, so G = ∅. Then G is linearly
independent (and V = 0) and so G is a basis. We can take B = ∅ = G in that
case. The reader can also discuss the case n = 1 as an exercise, if the empty set
makes them nervous. Suppose now that n ≥ 1 is such that we know the result for
all generating sets of at most n−1 elements. Let G be a generating set of V with n
elements. There are two cases. IfG is linearly independent, then we are done and we
can take B = G. Otherwise, G is linearly dependent. This means by Definition 1.5.1
that there is a proper subset G′ ( G such that Span(G′) = Span(G) = V . This
generating set G′ has less elements than G, i.e. at most n−1 elements. By induction
hypothesis, we know that there exists a subset B ⊆ G′ which is a basis of V . And
clearly B ⊆ G′ ⊂ G, so we found a basis B of V inside G. �

1.6.9. Exercise. Recall the cooking recipe from introductory linear algebra. Let
x1, . . . , xn be n vectors in V = Fm, with possible repetitions. Consider the sys-
tem of m linear equations a1x1 + · · · + anxn = 0 in the n variables a1, . . . , an.
Beware! The variables are not called x here. The xi are given. They will give
you the matrix A of the system by writing them in columns A = (x1|x2| · · · |xn).
Apply Gauss-Jordan to this (m × n)-matrix A. Some of the columns will contain
a ‘pivot’ in the row-reduced-echelon form (a leading 1 in its row). Let I =

{
i ∈

{1, . . . , n}
∣∣ there is a pivot in the i-th colum

}
be the indices of the columns where

there is such a pivot. Show that {xi}i∈I is a basis of Span(x1, . . . , xn). [Pitfall:
Do not use the i-th columns (i ∈ I) in the row-reduction of A but those in the
original A! Otherwise you will always get a subset of the canonical basis.]

1.6.10. Example. Let us do a numerical calculation. Take x1, x2, x3 the three
vector in R3 of Example 1.4.11. We want to find a basis of Span(x1, x2, x3). Form
the matrix A = (x1|x2|x3) by writing these generators in columns. Applying row-
reduction to this matrix, we find [bzzz]

A =
(

1 4 7
2 5 8
3 6 9

)
 
(

1 4 7
0 −3 −6
0 −6 −12

)
 
(

1 4 7
0 1 2
0 −6 −12

)
 
(

1 0 −1
0 1 2
0 0 0

)
.

(Note how we divided by −3 in the second step, because −3 6= 0 in F = R.) We see
pivots in the first and second columns. In the above notation, = {1, 2}. So x1 and
x2 are linearly independent. They form a basis {x1, x2} of Span(x1, x2, x3).

1.6.11. Remark. One can prove that Proposition 1.6.8 has an analogue without
the finiteness assumption: If G is a generating set of V then there exists a basis B ⊆
G contained in it. (6)

6 Here is a quick outline of this argument. The key fact is that a maximal linearly independent
subset B ⊆ G exists by set-theory (Zorn’s Lemma). This is actually equivalent to the so-called

Axiom of Choice. Maximality of B means that if B ⊆ B′ ⊆ G and B′ is also linearly independent
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We can also give an intuitive formulation of being a basis as ‘maximal linearly
independent set’ or ‘minimal set of generators’. We need a preparation.

1.6.12. Lemma. Let L be linearly independent in V and `′ ∈ V be a vector that
does not belong to Span(L). Then L ∪ {`′} remains linearly independent.

Proof. Note that `′ /∈ L since `′ /∈ Span(L). Suppose ab absurdo that L′ =
L∪{`′} is linearly dependent. Then Proposition 1.5.7 applied to L′ gives us a linear
combination a1 x1 + · · ·+an xn = 0 for n distinct vectors x1, . . . , xn in L∪{`′} such
that all ai 6= 0. These x1, . . . , xn cannot be all in L, for L is linearly independent.
So one of the xi is `′, say x1 = `′ up to renumbering, and then x2, . . . , xn ∈ L∪{`′}
being distinct from x1 = `′ must all be in L. But then we can can extract `′ = x1

from the equation
∑n
i=1 ai xi = 0 as `′ = x1 = −a−1

1 · (
∑n
i=2 aixi). This shows that

`′ ∈ Span(x2, . . . , xn) ⊆ Span(L) a contradiction with the choice of `′. �

1.6.13. Proposition. Let V be an F-vector space.

(1) Let L ⊂ V be a maximal linearly independent subset (maximal means that
whenever L ⊆ L′ with L′ linearly independent then L = L′). Then L is a basis.

(2) Let G ⊂ V be a minimal generating subset (minimal means that whenever
G′ ⊆ G with G′ generating V then G = G′). Then G is a basis.

Proof. In Part (1), we need to show Span(L) = V . Suppose ab absurdo that
Span(L) 6= V . Then there exists `′ ∈ V outside of Span(L) and in particular `′

does not belong to L. Then L′ = L ∪ {`′} is strictly larger than L and remains
linearly independent by Lemma 1.6.12. This contradicts the maximality of L.

In Part (2), we need to show that G is linearly independent. By minimality
of G we cannot find G′ ( G such that Span(G′) = Span(G) for such G′ would
span V . Therefore G is linearly independent by Definition 1.5.1. �

Let us now turn to our second question about bases: Can we say something
about the number of vectors in a basis? The fundamental trick to answer that
question is the following:

1.6.14. Theorem. Let V be an F-vector space that is generated by a finite set G.
Let L ⊂ V be a finite set that is linearly independent. Then L has at most as many
elements as G, which we write |L| ≤ |G|.

More precisely, there exists a subset H ≤ G such that

(a) The subset H has the same number of elements as L, in our notation |H| = |L|.
(b) The space V is generated by L∪(GrH), in our notation Span(L∪(GrH)) = V .

This is sometimes called the Replacement Theorem for we managed to remove
in the generating set G a bunch of vectors (those in H), keeping the rest G rH,
and replace those missing vectors by those of L, to create the new generating
set L ∪ (G r H). The number |H| of generators we remove is exactly |L|, the
number we put back.

Proof. First note that the second part of the statement is indeed ‘more pre-
cise’ than just saying |L| ≤ |G|. If we find H ⊆ G that satisfies (a) then of course

then B = B′. Such a maximal linearly independent B ⊆ G must span Span(G) otherwise we can

enlarge B to a bigger linearly independent subset B′ with B ( B′ ⊆ G by adding to B a suitably
chosen element of G (Exercise 1.5.13). This gives a contradiction with the maximality of B. So
our B is a linearly independent generating set, hence a basis.
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|L| = |H| ≤ |G|. Part (b) is crucial to perform induction. We prove more than we
need because it is easier. So let us prove the result by induction on n = |L|.

Suppose that n = 0, meaning L = ∅. Then there is nothing to do: Take H = ∅
for we have no choice if we want (a). Then check (b): L∪(GrH) = ∅∪(Gr∅) = G
still generates V . Nothing has changed.

The rest of the proof is the induction step. Suppose that n ≥ 1 and that we
know the result for any linearly independent set L′ with at most n − 1 elements.
Take now our L, with |L| = n. There is an obvious way to trigger the induction
hypothesis. Just pick some ` ∈ L and set L′ = L r {`}. This L′ remains linearly
independent (Corollary 1.5.12 (2)) and has n− 1 elements.

By induction hypothesis applied to L′, we can find a subset H ′ ⊆ G with n− 1
elements such that L′ ∪ (GrH ′) generates V :

(1.6.15) Span(L′ ∪ (GrH ′)) = V.

This is not yet what we want: We need to find H ⊆ G with n elements, whereas H ′

has only n − 1 elements. We just need to find one more vector to ‘replace’ by the
last vector in LrL′, namely `. In other words, we are going to define H as H ′∪{g}
for a judicious choice of g ∈ G, not in H ′.

Let us now use what we know from the induction hypothesis. We know (1.6.15).
Surely the vector ` is in V , so it is a linear combination of vectors in this generating
set L′∪(GrH ′). This means that we can find x1 . . . , xr ∈ L′ and y1, . . . , ys ∈ GrH ′
and scalars a1, . . . , ar and b1, . . . , bs such that

(1.6.16) ` =

r∑
i=1

ai · xi +

s∑
j=1

bj · yj .

We simply wrote ` as a linear combination of vectors in the union L′∪ (GrH ′), re-
grouping in the first sum the generators in L′ (we called them xi) and in the second
sum the generators in GrH ′ (we called them yj). As usual, we can assume that the
vectors x1, . . . , xr, y1, . . . , ys are all distinct and the coefficients a1, . . . , ar, b1, . . . , bs
are all non-zero, otherwise we can regroup the terms and remove those with coef-
ficient zero (as in the proof of Lemma 1.4.16) at the possible cost of making r or s
smaller. But so far, we have not excluded r = 0 or s = 0 anyway.

Now comes the trick. We cannot have s = 0 in (1.6.16). Indeed, this absurd
assumption would mean that ` =

∑r
i=1 ai xi which would contradict the linear

independence of L = L′ ∪{`} since ` /∈ L′ and since x1, . . . , xr ∈ L′ are all distinct.
So we know that s ≥ 1 in (1.6.16), with all bj 6= 0. In particular there is this

scalar b1 6= 0 in the field F. We know what to do. First multiply everything in sight
by b−1

1 and then think. We rearrange (1.6.16) to extract y1 as follows:

y1 = b−1
1 ·

(
−

r∑
i=1

ai · xi + `−
s∑
j=2

bj · yj
)
.

Let us not panic about the exact coefficients. What this equation says is that y1 is
a linear combination of x1, . . . , xr, `, y2, . . . , ys. Let us record this fact for later:

(1.6.17) y1 ∈ Span(x1, . . . , xr, `, y2, . . . , ys).

We are almost done! We just need to do the bookkeeping right. First, recall the
goal. We want a subset H ⊆ G with n = |L| elements. We define it to be

H := H ′ ∪ {y1}.
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Since H ′ has n−1 elements, H will have n elements as long as y1 /∈ H ′. But remem-
ber where y1 was taken from: Like all yj it belongs to GrH ′, see before (1.6.16).
In particular y1 /∈ H ′ as wanted. So we have (a). Let us prove (b).

The claim is that W := Span(L∪ (GrH)) is the whole of V . We shall use the
generators of V given in (1.6.15). First note that

(1.6.18) L′ ⊆ L ⊆ Span(L ∪ (GrH)) = W

and in particular the xi which were in L′ and ` which was in L all belong to W :

(1.6.19) x1 . . . , xr, ` ∈W.
We now want to show that (G r H ′) ⊆ W . Take y ∈ G r H ′. If y 6= y1 then y
belongs to the elements of G that are neither in H ′ nor in {y1} so y ∈ G rH by
definition of H = H ′ ∪ {y1}. For instance, all the y2, . . . , yr that belong to GrH ′

and are distinct from y1 belong to GrH. So

(1.6.20) y2, . . . , ys ∈ (GrH) ⊆ Span(L ∪ (GrH)) = W.

We now deduce from (1.6.17), (1.6.19) and (1.6.20) that

y1 ∈ Span(x1 . . . , xr, `, y2, . . . , ys) ⊆W.
So we just proved two things about the elements y ∈ G rH ′. When y 6= y1 then
y ∈ (GrH) ⊆W . And when y = y1 then y ∈W too! In short, they are all in W :

(GrH ′) ⊆W.
Combining the latter with (1.6.18), we see that

L′ ∪ (GrH ′) ⊆W.
But the set L′ ∪ (GrH ′) was a generating set of V by (1.6.15). So we deduce that
W = V , as was left to prove to get (b). The induction step is complete. �

1.6.21. Corollary. Let V be an F-vector space generated by a finite set G and L
be linearly independent. Then L is finite and |L| ≤ |G|.

Proof. Let m = |G|. By Theorem 1.6.14, every finite subset L′ ⊆ L being
linearly independent (Corollary 1.5.12 (2)) has at most m elements. So L cannot
contain m+ 1 different elements. Hence L is finite and |L| ≤ m. �

The Replacement Theorem 1.6.14 has a cascade of consequences. The most
important result of this chapter is one of those consequences:

1.6.22. Corollary. Let V be an F-vector space with a finite basis B. Then any
other basis B′ of V is finite as well and has the same number of elements as B:

|B| = |B′|.

Proof. Applying Corollary 1.6.21 to G = B and L = B′ tells us that B′ is
finite and |B′| ≤ |B|. Applying Corollary 1.6.21 to G = B′ and L = B tells us that
|B| ≤ |B′|. Combining the two, we get |B| = |B′|. Voilà! �

1.6.23. Remark. The above proof is misleadingly simple. It relies on the non-
trivial argument of Theorem 1.6.14. Note in particular that we can have two very
different subsets B and B′, for instance with B ∩B′ = ∅. See Remark 1.6.7.

Now comes the most important definition of this chapter, beyond the concept
of vector space.
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1.6.24. Definition. Let V be an F-vector space.

(1) If V admits a finite basis (or a finite generating set by Proposition 1.6.8), we
say that V is finite-dimensional over F. In that case, its dimension over F,
denoted dim(V ) = dimF(V ), is the number of elements in any basis B of V .

(2) If V does not admit a finite basis we say that V is infinite-dimensional. In that
case, all bases of V are infinite by Corollary 1.6.22. (7)

1.6.25. Example. The zero vector space {0} is the only vector space with dimen-
sion zero (i.e. empty basis).

1.6.26. Example. For any n ∈ N, we have dimF(Fn) = n. Indeed, the canonical
basis has n vectors. Therefore all other bases of Fn must contain exactly n vectors.

1.6.27. Exercise. For any p, q ≥ 1, we have dimF(Mp×q(F)) = p · q.

1.6.28. Remark. It is important to make sure the field is known. For instance,
dimC(C) = 1 but C is also a real vector space, namely R2 and dimR(C) = 2. A real
basis of C is given by {1, i}. In particular, those two vectors are linearly independent
over R. But they are linearly dependent over C as i · 1 + (−1) · i = 0. A complex
basis of C would be {1} (canonical) or {i} for instance, or any non-zero {z}. (8)

1.6.29. Example. The F-vector space F[X] is infinite-dimensional, as one basis{
Xi
∣∣ i ∈ N

}
is infinite, and therefore so are all others.

1.6.30. Exercise. Let d ≥ 1. The subspace W ⊂ F[X] of polynomials of degree
at most d has dimension d+ 1.

Let us return to the general consequences of Theorem 1.6.14.

1.6.31. Corollary. Let V be a finite-dimensional F-vector space of dimension n.

(1) Any linearly independent subset L ⊂ V has at most n elements. It has exactly
n elements if and only if L is a basis of V .

(2) Any generating set G of V has at least n elements. It has exactly n elements
if and only if G is a basis of V .

Proof. Let B be a basis of V . We have |B| = n.
For (1), we have |L| ≤ |B| by Corollary 1.6.21 applied to G = B. If now L

has exactly n elements, let us apply the full Replacement Theorem 1.6.14 to the
generating set G = B. It tells us that we can find H ⊆ B such that |H| = |L| and
L ∪ (B r H) generates V . But |H| = |L| = n = |B| and H ⊆ B forces H = B.
Thus the generating set is L∪ (B rH) = L∪∅ = L. So L is a basis by definition.

[‘Refresh’ the meaning of L and G, which are different for the second part.]
For (2), the generating set G cannot have strictly less than n elements otherwise

Corollary 1.6.21 applied to L = B and this G would tells us that n = |B| ≤ |G| < n,
which is absurd. If G has exactly n elements, we can find a basis B′ ⊆ G inside G
by Proposition 1.6.8. By Corollary 1.6.22, |B′| = |B| = n. The two sets B′ ⊆ G
thus have the same number of elements, which forces G = B′. So G is a basis. �

7 There is a way to distinguish between infinite sets. We say that two sets have the same

cardinal if there exists a bijection between them. One can prove with a little bit more set theory
that two bases of a possibly infinite-dimensional vector space have the same cardinal. That

cardinal is the general definition of dimension, and it is finer than just saying ‘infinite’.
8 It gets wilder. For instance R is infinite-dimensional over Q. And that ‘infinite’ is not

‘countable’, that is of cardinal larger than the cardinal of N.
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1.6.32. Corollary. Let V be a finite-dimensional F-vector space and W ⊆ V be a
subspace. Then the following statements hold:

(1) The subspace W is finite-dimensional and dim(W ) ≤ dim(V ).
(2) We have dim(W ) = dim(V ) if and only if W = V .
(3) We can extend any basis of W into a basis of V : If C is a basis of W then

there exists a basis B of V that contains C.

Proof. Let L ⊂ W be a linearly independent subset of W . Note that it re-
mains linearly independent in V . (Direct from Definition 1.5.1 or Corollary 1.5.10.)
Hence |L| ≤ dim(V ) by Corollary 1.6.31 (1). So there are only finitely many num-
bers

{
m ∈ N

∣∣ there exists L ⊂W linearly independent with |L| = m
}

all be-
tween zero and dim(V ). Pick m maximal in that set and pick L ⊆ W linearly
independent with m elements. This L is a maximal linearly independent subset of
the vector space W in the sense of Proposition 1.6.13 (1). Therefore L is a basis
of W . Therefore dim(W ) = |L| = m ≤ dim(V ) as claimed in (1).

For (2), if dim(W ) = dim(V ) then a basis C of W would be a linearly indepen-
dent subset of V with dim(V ) elements, hence a basis of V by Corollary 1.6.31. In
particular C would generate V and thus V = Span(C) = W .

For (3), we apply the Replacement Theorem 1.6.14 to L = C and G any basis
of V . There exists H ⊆ G with |H| = |C| and such that B := C ∪ (G r H)
generates V . Clearly C ⊆ B and we claim that B is a basis. By construction B
has at most |C| + |G r H| elements (there could be an intersection between C
and (G r H)) and that number is |C| + (|G| − |H|) = |G| since |C| = |H|. In
summary, B is a generating set of V with at most |G| = dim(V ) elements since G
is a basis. By Corollary 1.6.31 (2) we know that B is a basis of V as wanted. �

1.6.33. Exercise. In the spirit of Exercise 1.6.9, let us recall another cooking
recipe from introductory linear algebra. Let x1, . . . , x` be ` linearly independent
vectors in V = Fn, for instance a basis of subspace. How to find a basis of V that
extends C = {x1, . . . , x`}? Consider the system of n linear equations a1x1 + · · ·+
a`x` + a`+1e1 + · · ·+ a`+nen = 0 in the `+ n variables a1, . . . , a`+n. (The number
of variables is not really an issue: we rarely write the variables, just the matrix.)
Let A be the (n× (`+ n))-matrix the system A = (x1|x2| · · · |x`|e1| · · · |en). Apply
Gauss-Jordan and look at the columns where there is a pivot, as in Exercise 1.6.9.
Let I =

{
i ∈ {1, . . . , `+n}

∣∣ there is a pivot in the i-th colum
}

. Show that the first

` columns have a pivot: {1, . . . , `} ⊆ I and that {x1, . . . , x`} ∪
{
ei
∣∣ `+ i ∈ I

}
is a

basis of V . In other words, we can complete C by picking some ej in the canonical
basis e1, . . . , en (for those j corresponding to the pivots). There is nothing specific
about the canonical basis and one can use any basis B of V instead.

1.6.34. Exercise. Let W1 and W2 be two finite-dimensional subspaces of an F-
vector space V . Show that W1 +W2 and W1 ∩W2 are finite-dimensional and that

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

We now discuss the topic of coordinates, that will be important to turn our
beautiful abstract linear algebra into aesthetically-challenged introductory linear
algebra, column vectors and matrices. To do that carefully, we need to distinguish
a set with n elements from an ordered sequence x1, . . . , xn.

1.6.35. Definition. Let V be an F-vector space of finite dimension n. An or-
dered basis is a numbered sequence of vectors x1, . . . , xn, all distinct, such that
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the set {x1, . . . , xn} is a basis of V . We shall mildly abuse notation and write
“B = {x1, . . . , xn} is an ordered basis” in this situation.

1.6.36. Proposition. Let x1, . . . , xn be an ordered basis of an F-vector space V .
Then for every v ∈ V there exists a unique n-tuple of scalars (a1, . . . , an) ∈ Fn,
depending on v, such that a1x1 + · · ·+ anxn = v.

Proof. Such a tuple (a1, . . . , an) exists by definition of Span(x1, . . . , xn) = V .
For uniqueness, let (b1, . . . , bn) be such that b1x1 + · · ·+ bnxn = v. We compute

n∑
i=1

(ai − bi) · xi =

n∑
i=1

ai · xi −
n∑
i=1

bi · xi = v − v = 0.

Since the vectors x1, . . . , xn are linearly independent, those coefficients (ai−bi) must
all be zero, for all 1 ≤ i ≤ n (Corollary 1.5.10). Thus (a1, . . . , an) = (b1, . . . , bn). �

1.6.37. Definition. Let B = {x1, . . . , xn} be an ordered basis of V . Let v ∈ V .
The coordinates of v in the ordered basis B is the unique n-tuple (a1, . . . , an) in Fn

of Proposition 1.6.36 such that a1 · x1 + · · ·+ an · xn = v. We write

[
v
]
B

=

 a1

...
an


to mean “the coordinates of v in the ordered basis B are a1, . . . , an, in that order”.
We use column vectors because of the matrix calculus that ensues.

1.6.38. Exercise. Let B be an ordered basis of V . Show that we have [v+w]B =
[v]B + [w]B and [a · v]B = a · [v]B for all v, w ∈ V and a ∈ F.

1.6.39. Exercise. Let B = {e1, . . . , en} be the canonical basis of V = Fn. Let
v ∈ Fn. What are the coordinates of v in the basis B?

1.6.40. Exercise. Let W = Span(x1, x2) in V = R3 for x1 = (1, 2, 3) and
x2 = (4, 5, 6). We know that {x1, x2} is an (ordered) basis of W . What are
the coordinates of v = (7, 8, 9) in that basis?

1.6.41. Remark. We shall rarely use coordinates with an infinite basis. However,
they are quite easy, especially if we adopt a flexible notation. The notation is
mildly dangerous (don’t hurt yourself!) but very convenient. Let B be a basis
of V , possibly infinite. The fact that B is a set of generators means that every
v ∈ V can be written as

(1.6.42) v =
∑
b∈B

ab · b

for scalars ab ∈ F indexed by b ∈ B and that are almost all zero, meaning the set
of indices

{
b ∈ B

∣∣ ab 6= 0
}

is finite. So the apparently infinite sum in (1.6.42) only
involves finitely many non-zero terms, so it should be read as the finite sum∑

b∈B
ab 6=0

ab · b .

The fact that B is linearly independent really means that those coefficients ab are
unique (as a function B → F), for a given v. The argument of Proposition 1.6.36
goes through. These scalars (ab)b∈B are the coordinates of v in the basis B. [Exer-
cise: Check that this boils down to the earlier definition when B is finite.]





CHAPTER 2

Linear transformations

In Chapter 1, we studied one vector space at a time. We now want to move
from one vector space to another. For the whole chapter F is a fixed field.

2.1. Linear transformations

2.1.1. Definition. Let V and V ′ be two vector spaces on the same field F. A
linear transformation T : V → V ′ is a function

T : V // V ′

x
� // T (x)

that preserves the two operations, the addition and the action of F, i.e. we require
that T satisfies the following two axioms:

(LT1) We have T (x+ y) = T (x) + T (y) in V ′ for every x, y in V .

(LT2) We have T (a · x) = a · T (x) in V ′ for every x in V and every a in F.

Equivalently, this means that T preserves linear combinations: We have

(2.1.2) T
( n∑
i=1

ai · xi
)

=

n∑
i=1

ai · T (xi)

in V ′ for every n ∈ N, vectors x1, . . . , xn in V and scalars a1, . . . , an in F.

Let us begin with the trivial examples, from very trivial to less so.

2.1.3. Example. For any V and V ′ there is at least the zero transformation
0: V → V ′ defined by 0(x) = 0V ′ for every x ∈ V .

2.1.4. Example. For any vector space V there is the identity transformation
IdV : V → V defined by IdV (x) = x for every x ∈ V .

2.1.5. Example. A slight variation on the previous example is the inclusion of a
subspace. Let W ⊆ V be a subspace. Then incl : W → V defined by incl(x) = x
for every x ∈W is a linear transformation from W to V .

Following our pattern, after trivial examples, we should import all examples
from introductory linear algebra.

2.1.6. Example. Let p, q ∈ N with p, q ≥ 1. We want to define linear transforma-
tions Fp → Fq. So here V = Fp and V ′ = Fq and we shall write vectors in columns
to use matrix multiplication. Let A ∈ Mq×p(F) be a matrix of size q × p – stress
here the ‘reversal’ of the order of p and q. Define

(2.1.7)
TA : Fp // Fq

x
� // TA(x) = A · x

33
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where the latter · is matrix multiplication. In other words, if x =

[ x1

...
xp

]
in Fp then

TA(x) =

[ y1
...
yq

]
is given by the following formula, for 1 ≤ i ≤ q:

(2.1.8) yi =

p∑
j=1

Aij xj .

It is an easy but important exercise to verify linearity of this transformation TA.
Recall that these TA are in fact the only linear transformations from Fp to Fq.

We shall reprove this in Corollary 2.4.9.

Let us give further examples.

2.1.9. Exercise. Let n ∈ N, n ≥ 1. Consider V = Mn×n(F) and V ′ = F1. The
trace tr : Mn×n(F) → F is defined by tr(X) = X11 + X22 + · · · + Xnn for every
(n× n)-matrix X. Verify that tr : V → V ′ is linear.

2.1.10. Exercise. Is the determinant det : Mn×n(F)→ F linear?

Let now discuss examples involving infinite-dimensional vector spaces.

2.1.11. Exercise. Let V = FN be the vector space of sequences (xi)i∈N in F.
Consider the transformation

T : V // V

(xi)i∈N
� // (yi)i∈N where yi = xi+1 for all i ∈ N

that ‘moves a sequence one notch to the left’ T (x0, x1, x2, . . .) = (x1, x2, x3 . . .) and
‘drops’ x0. Prove that T is linear.

2.1.12. Exercise. Let V = FN as above and consider the transformation

S : V // V

(xi)i∈N
� // (yi)i∈N where yi =

{
xi−1 if i ≥ 1

0 if i = 0.

that ‘moves one notch to the right’ S(x0, x1, x2, x3, . . .) = (0, x0, x1, x2, . . .) and
‘squeezes in’ 0 at the start. Prove that S is linear as well. Prove that 0 was the
only option to ‘squeeze in’ in the first slot.

2.1.13. Exercise. Let c ∈ F be fixed. Define evaluation at c

evc : F[X]→ F

at every P = a0 + a1X + · · ·+ anX
n by evc(P ) = P (c) = a0 + a1c+ · · ·+ anc

n (in
colloquial terms, ‘plug X = c’). Show that evc is linear.

2.1.14. Remark. It is sometimes necessary to say F-linear, to emphasize the field
of scalars. For instance, consider V = C and T : V → V complex conjugation
T (x+ yi) = x− yi. Then V is a real vector space and T is R-linear. However, V is
also a complex vector space but T is not C-linear since T (i · 1) = −i 6= i = i · T (1).

2.1.15. Proposition. Let B = {x1, . . . , xn} be an ordered basis of V . Then we
have a linear transformation [−]B : V → Fn defined by mapping v ∈ V to its
coordinates [v]B ∈ Fn in the basis.
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Proof. Exercise 1.6.38. �

2.1.16. Remark. Note that a linear transformation T : V → V ′ is in particular a
function, hence belongs to the vector space (V ′)V . (See Exercise 1.2.20.) We can
thus add linear transformations and multiply them by scalars in the obvious way
and verify that they remain linear. Let us spell this out.

2.1.17. Proposition. Let V, V ′ be F-vector spaces.

(1) If T1, T2 : V → V ′ are linear then T1 + T2 : V → V ′ remains linear, where we
recall that (T1 + T2)(x) = T1(x) + T2(x) for every x ∈ V .

(2) If T : V → V ′ is linear and a ∈ F is a scalar then a ·T : V → V ′ remains linear,
where we recall that (a · T )(x) = a · (T (x)) for every x ∈ V .

(3) The set LinF(V, V ′) =
{
T : V → V ′

∣∣T is linear
}

is a vector space with the

above operations. (It is a subspace of (V ′)V .)

Proof. Exercise. �

2.1.18. Notation. In advanced algebra, LinF(V, V ′) is often denoted HomF(V, V ′)
instead. Here Hom stands to ‘homomorphisms’. We shall keep LinF in these notes,
sometimes dropping the F when clear from context.

We can compose linear transformations.

2.1.19. Definition. Let V, V ′ and V ′′ be three F-vector spaces and let T : V → V ′

and S : V ′ → V ′′ be two linear transformations. Their composition S ◦T : V → V ′′

(as functions) is defined as follows

S ◦ T : V
T // V ′

S // V ′′

x � // (S ◦ T )(x) = S(T (x)).

To check that S ◦ T : V → V ′′ remains linear, we compute for all possible n ∈ N,
all vectors x1, . . . , xn ∈ V and all scalars a1, . . . , an ∈ F

(S ◦ T )
(∑n

i=1 ai · xi
)

= S
(
T
(∑n

i=1 ai · xi
))

by definition of S ◦ T

= S
(∑n

i=1 ai · T (xi)
)

by linearity of T

=
∑n
i=1 ai · S

(
T (xi)

)
by linearity of S

=
∑n
i=1 ai ·

(
(S ◦ T )(xi)

)
by definition of S ◦ T .

Hence S ◦ T is indeed linear.

2.1.20. Remark. For any T : V → V ′, we have T ◦ IdV = T and IdV ′ ◦T = T .
For three consecutive linear transformations, T, S,R, we also have R ◦ (S ◦ T ) =
(R ◦ S) ◦ T . [Exercise: Draw the ‘diagram’ with the vector spaces and the arrows.]

2.1.21. Exercise. Consider the two linear transformations S, T : V → V of Ex-
amples 2.1.11 and 2.1.12, on the vector space V = FN of sequences. Compute the
composites S ◦ T and T ◦ S. For every m ∈ N describe Tm = T ◦ T ◦ · · · ◦ T (the
composition of m copies of T ) and describe Sm.

2.1.22. Exercise. Let S : V ′ → V ′′. Show that S ◦− : LinF(V, V ′)→ LinF(V, V ′′),
T 7→ S ◦ T , is linear. State (and prove) an analogous result for − ◦ T .

2.1.23. Theorem. Let V and V ′ be two F-vector spaces. Let B be a basis of V .
Suppose given a vector yb in V ′ for every basis vector b ∈ B.
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(1) We can extend the assignment b 7→ yb (given for b ∈ B) to a linear transfor-
mation on the whole of V . In other words, there exists a linear transforma-
tion T : V → V ′ such that T (b) = yb for every b ∈ B.

(2) The linear transformation T of Part (1) is unique: If T, T ′ : V → V ′ are two
linear transformations such that T (b) = T ′(b) for all b ∈ B then T = T ′.

Proof. Let us prove uniqueness (2) first. Suppose that T : V → V ′ is linear
and satisfies T (b) = yb for all b ∈ B. Pick now a vector v ∈ V . Since B is a
basis, we can write v =

∑
b∈B ab · b for scalars ab ∈ F, with the abuse of notation

of (1.6.42), that is, the ab are almost all zero and this apparently infinite sum (when
B is infinite) is always finite. Then by linearity of T we must have

(2.1.24) T (v) = T (
∑
b∈B

ab · b) =
∑
b∈B

ab · T (b) =
∑
b∈B

ab · yb

where the last equality holds because we want T (b) to be the given vector yb for
b ∈ B. As we see from (2.1.24), the image T (v) is entirely forced once we know the
coordinates of v in the basis B and the image T (b) = yb. (Another T ′ would give
the same T ′(v) as on the right-hand side of (2.1.24).)

We can now prove (1) by means of (2.1.24). Define T : V → V ′ by the following
process. For every v ∈ V , write v =

∑
b∈B ab · b for scalars ab ∈ F almost all zero

and set T (v) =
∑
b∈B ab ·yb. This is a well-defined process as there is only one such

collection (ab)b∈B of scalars, since B is a basis. (See Remark 1.6.41.) We need to
verify two things: That T is linear and that T (b) = yb for all b ∈ B. The latter
is easy since b = 1 · b has obvious coordinates (δb,b′)b′∈B hence T (b) = 1 · yb = yb.
For linearity, let us check (LT 1). Suppose that v, ṽ are two vectors in V and write
them in coordinates: v =

∑
b∈B ab · b and ṽ =

∑
b∈B ãb · b for scalars ab, ãb ∈ F.

The coordinates of v + ṽ are easy: v + ṽ =
∑
b∈B(ab + ãb) · b. Again, all these

sums are truly finite. By definition of T , we have set T (v), T (ṽ) and T (v + ṽ) to
be respectively ∑

b∈B

ab · yb ,
∑
b∈B

ãb · yb and
∑
b∈B

(ab + ãb) · yb .

It is then easy to see that T (v) + T (ṽ) = T (v + ṽ). This proves (LT 1). We leave
the (easier) verification of (LT 2) to the reader. �

2.1.25. Exercise. Redo the above proof when V is finite-dimensional and B =
{x1, . . . , xn} is an ordered basis. [In that case, we do not write axi for xi ∈ B
but simply ai.] Show that given y1, . . . , yn in V ′ the unique T : V → V ′ such that
T (xi) = yi on the basis (i = 1 . . . , n) is given by

(2.1.26) T (v) =

n∑
i=1

ai · yi where [v]B =

[
a1
...
an

]
.

2.1.27. Remark. The main take-home information of Theorem 2.1.23 is the follow-
ing. A linear transformation T : V → V ′ which a priori seems to involve a massive
amount of information (all T (v) for the usually infinitely many v ∈ V ) can be com-
pletely and uniquely described by deciding where T maps the vectors of a given basis
of V . Even better, if V is finite-dimensional with basis {x1, . . . , xn} then the infor-
mation necessary to describe T consists of finitely many vectors T (x1), . . . , T (xn)
in V ′. Even even better, if V ′ is also finite-dimensional, say of dimension m, then
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those n vectors T (x1), . . . , T (xn) themselves are known once we know their coordi-
nates in some basis of V ′. So the knowledge of T boils down to n sets of m scalars.
We follow-up on this idea in Section 2.4.

2.1.28. Remark. There is a simpler way to formulate Theorem 2.1.23 as follows.
The transformation T : V → V ′ that we construct is simply the composition T =
S ◦ [−]B of two linear transformations

V
[−]B

// F(B) S // V ′.

The first one is ‘the coordinates’ [−]B : V → F(B) with respect to B. The second,
S : F(B) → V ′, maps a function a : B → F to

∑
b∈B a(b) · yb where the latter sum is

finite, since a ∈ F(B) means that a(b) 6= 0 only for finitely many b ∈ B.
When the basis B = {x1, . . . , xn} is finite, the transformation S simply maps

every a =

[
a1
...
an

]
to a1 ·y1 + · · ·+an ·yn. In both cases, the only thing we need is the

knowledge of yb in V ′ for each b ∈ B (respectively of yi = yxi for each i = 1, . . . , n).

2.1.29. Remark. In fact, linear transformations T : F(I) → V , out of the free F-
vector space F(I) over a set I into a given vector space V , are exactly the same as
functions I → V , as sets. This is the meaning of the phrase ‘free vector space over
the set I’. In other words, we have an isomorphism

Lin(F(I), V ) ' V I .

To see this, note that we have a bijection ε : i 7→ ei between I and the canonical basis{
ei
∣∣ i ∈ I } of F(I). If T : F(I) → V is linear, we can associate to it the function

f = Φ(T ) : I → V mapping i to T (ei). (In short, Φ(T ) = T ◦ε.) Conversely, given a
function f : I → V as sets, we use Theorem 2.1.23 to extend linearly the assignment
ei 7→ f(i) to a linear transformation T = Ψ(f) : F(I) → V . Explicitly, this T is
simply given by T (a) =

∑
i∈I a(i)·f(i) in V for every a : I → F that belongs to F(I).

As usual, this apparently infinite sum
∑
i∈I · · · is well-defined since our a : I → F is

zero except at finitely many points. One can verify that Φ: Lin(F(I), V )→ V I and
Ψ: V I → Lin(F(I), V ) are inverses isomorphisms: They are linear and Φ ◦ Ψ = Id
and Ψ ◦ Φ = Id.

2.2. Kernel and Image

In this section, we consider a linear transformation T : V → V ′ between F-
vector spaces V and V ′ and associate to it two subspaces, one of V and one of V ′.

2.2.1. Definition. The kernel (or nullspace) of a linear transformation T : V → V ′

is defined to be the following subspace of V :

Ker(T ) =
{
v ∈ V

∣∣T (v) = 0
}

consisting of all vectors that get mapped to zero under T .
The dimension of this subspace is sometimes called the nullity of T and de-

noted null(T ) = dim(Ker(T )).

2.2.2. Exercise. Verify that the subset Ker(T ) is indeed a subspace of V .
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2.2.3. Definition. The image (or range) of a linear transformation T : V → V ′ is
defined to be the following subspace of V ′:

Im(T ) =
{
T (x)

∣∣x ∈ V } =
{
y ∈ V ′

∣∣ there exists x ∈ V with T (x) = y
}

consisting of all vectors in V ′ that are the image of at least one vector in V .
The dimension of this subspace if always called the rank of T and denoted

rank(T ) = dim(Im(T )).

2.2.4. Remark. It is also easy to check that Im(T ) is a subspace of V ′. Let us show
that Im(T ) is closed under arbitrary linear combinations (using Proposition 1.4.3).
Let n ∈ N, y1, . . . , yn ∈ Im(T ) and a1, . . . , an ∈ F. For each i = 1, . . . , n the
definition of yi ∈ Im(T ) guarantees the existence of some xi ∈ V such that yi =
T (xi). Then we get by linearity of T that

n∑
i=1

ai · yi =

n∑
i=1

ai · T (xi) = T (

n∑
i=1

ai · xi).

This relation shows that our linear combination
∑n
i=1 ai · yi in V ′ is the image of

the vector
∑n
i=1 ai · xi in V , hence

∑n
i=1 ai · yi belongs to Im(T ) by definition.

2.2.5. Exercise. Let T : V → V ′ be a linear transformation and G ⊆ V be a gen-
erating set, i.e. Span(G) = V . Show that T (G) =

{
T (x)

∣∣x ∈ G} is a generating
set of the image of T . In formula: T (Span(G)) = Span(T (G)).

We can now prove the following celebrated result:

2.2.6. Theorem (Rank-Nullity). Let T : V → V ′ be a linear transformation of F-
vector spaces. Suppose that V is finite-dimensional. Then so are Ker(T ) and Im(T ).
Furthermore, the dimension of V is the sum of the rank of T and the nullity of T :

dim(Im(T )) + dim(Ker(T )) = dim(V ).

Proof. By Corollary 1.6.32, a subspace of a finite-dimensional space is finite-
dimensional. Hence Ker(T ) ⊆ V is finite-dimensional. (By Exercise 2.2.5 and the
fact that V is generated by a finite basis, we know that Im(T ) is generated by a
finite set hence is finite-dimensional by Proposition 1.6.8. But we can prove the
result without this step. Note that V ′ is not assumed finite-dimensional!)

Let n = dim(V ) and m = dim(Ker(T )) ≤ n. Let C = {x1, . . . , xm} be a
basis of Ker(T ). We know by Corollary 1.6.32 (3) that C can be completed into
a basis B = {x1, . . . , xm, xm+1, . . . , xn} of V . We now claim that the n −m vec-
tors T (xm+1), . . . , T (xn) are all distinct and form a basis of Im(T ). This claim
gives dim(V ) = n = (n−m) +m = dim(Im(T )) + dim(Ker(T )) hence the theorem.

Suppose that am+1, . . . , an ∈ F are such that am+1T (xm+1)+· · ·+anT (xn) = 0.
We need to show that am+1 = · · · = an = 0. Then T (

∑n
i=m+1 aixi) = 0 by lin-

earity of T and therefore
∑n
i=m+1 aixi ∈ Ker(T ) = Span(x1, . . . , xm). So we can

write
∑n
i=m+1 aixi =

∑m
i=1 aixi for some a1, . . . , am ∈ F. By linear indepen-

dence of x1, . . . , xm, xm+1, . . . , xn this relation forces all ai = 0, and in particular
am+1 = · · · = an = 0 as wanted. We have thus shown that T (xm+1), . . . , T (xn) are
all distinct and linearly independent. We claim they also span Im(T ). This is easy.
If y ∈ Im(T ) then y = T (x) for some x ∈ V . Writing x in coordinates in the basis B,
we have x =

∑n
i=1 bi · xi for b1, . . . , bn ∈ F. Then y = T (x) =

∑n
i=1 bi · T (xi) by

linearity. But the first m vectors x1, . . . , xm ∈ Ker(T ) map to zero under T , so the
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first m terms in our sum vanish: y =
∑n
i=1 bi ·T (xi) =

∑n
i=m+1 bi ·T (xi) and there-

fore y ∈ Span(T (xm+1), . . . , T (xn)). In short Im(T ) ⊆ Span(T (xm+1), . . . , T (xn))
hence this inclusion is an equality since all T (xi) belong to Im(T ). �

2.2.7. Exercise. If V is infinite-dimensional, then one of Ker(T ) or Im(T ) is
infinite-dimensional but not necessarily both. Give three examples of T : V → V ′

illustrating each situation (1: finite nullity but infinite rank; 2: infinite nullity but
finite rank; 3: infinite nullity and infinite rank).

2.2.8. Exercise. Let x1, . . . , xn be vectors of V and T : V → V ′ be linear. Show
that if T (x1), . . . , T (xn) are distinct and linearly independent in V ′ then x1, . . . , xn
are distinct and linearly independent in V . Give an easy example to show that the
converse is not always true.

Recall from Appendix B that T : V → V ′ is called surjective or onto if for every
y ∈ V ′ there exists x ∈ V such that T (x) = y. This is equivalent to Im(T ) = V ′.

Recall that T : V → V ′ is called injective or one-to-one if T (x) = T (x′) forces
x = x′. For linear T we can rephrase this as follows:

2.2.9. Proposition. Let T : V → V ′ be a linear transformation. Then T is injec-
tive (one-to-one) if and only if Ker(T ) = {0}.

Proof. Suppose that T is injective and pick x ∈ Ker(T ). Then T (x) = 0 =
T (0). Hence x = 0 by injectivity. In short, Ker(T ) = {0}. That was trivial.

The interesting implication is the converse. Suppose that Ker(T ) = {0}. Let
now x, x′ ∈ V such that T (x) = T (x′). We want to show that x = x′. Since T is
linear we have T (x − x′) = T (x) − T (x′) = 0. So x − x′ ∈ Ker(T ) = {0} which
means x− x′ = 0 and therefore x = x′ as wanted. �

2.2.10. Remark. Of course linearity is essential here (at least ‘additivity’). For
instance the function f : R→ R given by f(x) = x2 has

{
x ∈ R

∣∣ f(x) = 0
}

reduced
to {0} but is not injective, as f(−1) = f(1) for instance. So this function is not
linear, as we know: (x+ y)2 6= x2 + y2. The subset f−1({0}) =

{
x ∈ R

∣∣ f(x) = 0
}

is not called the kernel for non-linear functions, just the preimage of 0.

2.2.11. Exercise. What are the possible ranks and nullities of linear transforma-
tions T : F2 → F5. Provide examples of T for all possible pairs (rank,nullity) in
your list. Same question about T : F6 → F2.

2.2.12. Exercise. Let T : Fn → Fn be a linear transformation such that Ker(T ) =
Im(T ). Show that n must be even. Conversely, if n is even, show that there exists
a linear transformation T : Fn → Fn such that Ker(T ) = Im(T ).

2.3. Isomorphisms

Recall that the field F is fixed.
In mathematics, we say that two structures are isomorphic (from ‘iso’ meaning

‘same’ and ‘morphe’ meaning ‘form’) if there are morphisms (homomorphisms)
both ways, whose compositions are the respective identities. Here, we use linear
transformations as (homo)morphisms, so the notion specializes to:
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2.3.1. Definition. Let V and V ′ be two F-vector spaces. We say that V and V ′ are
isomorphic if there exists two linear transformations T : V → V ′ and T ′ : V ′ → V
such that T ′ ◦ T = IdV and T ◦ T ′ = IdV ′ , meaning that T ′(T (x)) = x for every

x ∈ V and T (T ′(y)) = y for every y ∈ V ′. We write V ' V ′ or T : V
∼→ V ′ and we

say that T : V
∼→ V ′ is an isomorphism between V and V ′. Alternatively, one often

says that a linear transformation T : V → V ′ is invertible if it is an isomorphism.

2.3.2. Example. The ‘identifications’ we wanted to do in Chapter 1 are in fact
(canonical) isomorphisms. For instance, Mp×q(F) ' Fpq by re-arranging indices.

Similarly F[X] ' F(N) and
{
P ∈ F[X]

∣∣ deg(P ) ≤ d
}
' Fd+1 via obvious isomor-

phisms (a0 + a1X + a2X
2 + · · · ) 7→ (a0, a1, a2, . . .).

2.3.3. Example. Recall from elementary linear algebra that a square matrix A ∈
Mn×n(F) is invertible if there exists a matrix C ∈ Mn×n(F) such that A · C =
C ·A = In, where In = [δij ]1≤i,j≤n is the identity matrix. If it exists, this matrix C
is unique and denoted A−1. If A ∈ Mn×n(F) is invertible, with inverse A−1, then

TA : Fn
∼→ Fn is an isomorphism with inverse (TA)−1 = TA−1 since TA−1 ◦ TA =

TA−1A = TIn = Id and similarly TA ◦ TA−1 = Id.

Perhaps it is good to refresh the matrix calculus of the inverse.

2.3.4. Exercise. Let A ∈ Mn×n(F). Apply Gauss-Jordan to the n × (2n)-matrix
[A|In] obtained by copying the identity next to A. Show that the output is of the
form [In|B] (i.e. the n first columns contain a pivot) if and only if A is invertible.
Show that in that case, B is the inverse of A. [Hint: See how this is solving n linear
systems simultaneously, namely A · xi = ei for i = 1, . . . , n.]

2.3.5. Remark. Recall the set-theoretic notion of bijection (Appendix B). It fol-

lows from Definition 2.3.1 that T : V
∼→ V ′ being an isomorphism forces T to be a

bijection between the sets V and V ′. Its set-theoretic inverse T−1 : V ′ → V is the
T ′ of Definition 2.3.1, which is required to be linear. In fact, this is automatic.

2.3.6. Lemma. Suppose that a linear transformation T : V → V ′ is bijective and
let T−1 : V ′ → V be its inverse as a function. Then T−1 is linear as well.

Proof. Let n ∈ N, y1, . . . , yn ∈ V ′ and a1, . . . , an ∈ F. We want to show that

(2.3.7) T−1
( n∑
i=1

ai · yi
)

=

n∑
i=1

ai · T−1(yi)

in V . Since T : V → V ′ is injective, it suffices to check that the image under T of
those two vectors are the same in V ′. And indeed, we compute in V ′

T
(
T−1

(∑n
i=1 ai · yi

))
=
∑n
i=1 ai · yi since T ◦ T−1 = Id

=
∑n
i=1 ai · T (T−1(yi)) since T ◦ T−1 = Id

= T
(∑n

i=1 ai · T−1(yi)
)

since T is linear.

This proves the equality (2.3.7). Thus T−1 is linear. �

2.3.8. Proposition. Let T : V → V ′ be a linear transformation of F-vector spaces.
The following are equivalent:

(i) T is an isomorphism (i.e. T is invertible).
(ii) T is a bijection as a map of sets (i.e. it is one-to-one and onto).
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(iii) Ker(T ) = {0} and Im(T ) = V ′.

Proof. For (ii)⇔(iii), we have seen that T is injective ⇐⇒ Ker(T ) = {0} in
Proposition 2.2.9 and we have T surjective ⇐⇒ Im(T ) = V ′ by definition.

(i)⇒(ii) is immediate by definition of isomorphism. (See Remark 2.3.5.) For
(ii)⇒(i), suppose that T is a bijection. Lemma 2.3.6 tells us that T−1 is linear,
hence T is an isomorphism by Definition 2.3.1 with T ′ = T−1. �

2.3.9. Exercise. Being isomorphic ' is an equivalence relation. (1) Prove:

(1) For any V , the identity IdV is an isomorphism. Hence reflexivity: V ' V .
[Beware that we are absolutely not saying that any linear T : V → V is an
isomorphism! Remember to test silly guesses with T = 0 for instance.]

(2) If T : V
∼→ V ′ is an isomorphism then T−1 : V ′ → V is also an isomorphism

with (T−1)−1 = T . Hence symmetry: If V ' V ′ then V ′ ' V .

(3) Show that if T : V
∼→ V ′ and S : V ′

∼→ V ′′ are isomorphisms then their
composition S ◦ T : V → V ′′ is an isomorphism as well and that

(S ◦ T )−1 = T−1 ◦ S−1.

Hence transitivity: If V ' V ′ and if V ′ ' V ′′ then V ' V ′′.

We can use the notion of isomorphism to revisit what it means to be a (finite,
ordered) basis.

2.3.10. Theorem. Let B be an ordered collection (an n-tuple) of vectors x1, . . . , xn
in a vector space V and consider the following linear transformation (2)

SB : Fn // V[
a1
...
an

]
� // a1 · x1 + · · ·+ an · xn.

(Here, we write vectors of Fn in columns.) Then we have:

(1) SB is surjective (onto) if and only if the vectors x1, . . . , xn generate V .
(2) SB is injective (one-to-one) if and only if the vectors x1, . . . , xn are all distinct

and linearly independent.
(3) SB : Fn

∼→ V is an isomorphism if and only if B is an ordered basis of V .

Moreover, when B is a basis of V , then the inverse V
∼→ Fn of the isomor-

phism SB : Fn
∼→ V is nothing but the coordinate function with respect to B:

(SB)−1 = [−]B .

Proof. For (1), asking that every y ∈ V can be written as SB(

[
a1
...
an

]
) for

some a1, . . . , an ∈ F is both the surjectivity of SB and the fact that B spans V .
For (2), asking that SB is one-to-one is the same as Ker(SB) = {0} and this is

exactly saying that the only

[
a1
...
an

]
such that SB(

[
a1
...
an

]
) = 0 is

[
a1
...
an

]
=

[
0
...
0

]
. The

latter precisely says that the x1, . . . , xn are all distinct and linearly independent.

1 Except that all F-vector spaces taken together do not form a set, but a proper class.
2 In the notation of Theorem 2.1.23, the linear transformation SB is characterized by the

requirement that SB(ei) = xi for all i = 1, . . . , n, where e1, . . . , en is the canonical basis of Fn.
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For (3), we combine (1) and (2). Now for the description of (SB)−1, let us
unpack the definition of the inverse: For each v ∈ V we set S−1

B (v) to be the unique

a =

[
a1
...
an

]
∈ Fn such that SB(a) = v, which means a1 · x1 + · · ·+ an · xn = v. This

n-tuple a is exactly the definition of [v]B , the coordinates of v in the basis B. �

2.3.11. Exercise. The finite dimension was not essential above. If B is a basis of V
then we can define SB : F(B) → V in the same way (see Remark 2.1.29). Namely,
we let SB(a) =

∑
b∈B a(b) · b for any a ∈ F(B), that is a function a : B → F which is

zero almost everywhere. Again, SB is surjective because B generates and injective
because B is linearly independent. Hence SB is an isomorphism between the free
F-vector space over the set B and the vector space V . The inverse isomorphism
[−] : V → F(B) is again the coordinate function, by definition.

There is a strong connection between isomorphism and dimension. Let us
gather all information in one statement.

2.3.12. Theorem. Let V and V ′ be vector spaces over F. Then we have:

(1) If V ' V ′ are isomorphic, they have the same dimension: Either they are both
infinite-dimensional or they are both finite-dimensional and dim(V ) = dim(V ′).

(2) If V has finite dimension n then V is isomorphic to Fn. More precisely, if B is

a basis of V then we have an isomorphism [−]B : V
∼→ Fn defined by sending

a vector to its coordinates x 7→ [x]B.

(3) Suppose that V and V ′ are finite-dimensional. Then V and V ′ are isomorphic
if and only if dim(V ) = dim(V ′).

Proof. Part (1) follows from the meta-statement: Isomorphic spaces share

all linear properties. Specifically, if T : V
∼→ V ′ is an isomorphism, and L ⊆ V

is a subset and L′ = T (L) is the corresponding subset of V ′ then L is linearly
independent in V if and only if L′ is linearly independent in V ′. Similarly, L
spans V if and only if L′ spans V ′. Etc. These are good easy exercises using (2.1.2)
and bijectivity of T . In particular, L is a basis of V if and only if its image L′ is a
basis of V ′. As T : L → L′ is a bijection, L and L′ are simultaneously finite, and
when finite they have the same number of elements. This gives (1).

Part (2) is direct from Theorem 2.3.10. We have an isomorphism SB : Fn
∼→ V

and [−]B : V
∼→ Fn is its inverse.

Part (3) follows easily. We have already seen one direction in (1). Conversely,
if V and V ′ have the same finite dimension n then V ' Fn by (2) and Fn ' V ′

by (2) and therefore V ' V ′ by transitivity of '. See Exercise 2.3.9 if necessary.
Unpacking the proof, we can take a basis x1, . . . , xn of V , a basis x′1, . . . , x

′
n of V ′

(for the same n since we assume dim(V ) = dim(V ′)) and define an isomorphism
T : V → V ′ by extending F-linearly the assignment on the basis T (xi) = x′i for all i,
as in Theorem 2.1.23. Its inverse T ′ : V ′ → V is defined by extending T ′(x′i) = xi
for all i. We have T ′ ◦ T = IdV and T ◦ T ′ = IdV ′ since these relations hold on the
basis (by the uniqueness part of Theorem 2.1.23). �

2.3.13. Remark. If A ∈ Mp×q(F) and C ∈ Mq×p(F) satisfy A · C = Ip and
C · A = Iq then TA : Fq → Fp is an isomorphism with inverse TC : Fp → Fq. In
that case Theorem 2.3.12 (1) forces p = dim(Fp) = dim(Fq) = q. So only square
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matrices should be considered for invertibility as we learned in introductory linear
algebra (see Example 2.3.3).

In the spirit of Corollary 1.6.31, we can show that knowing that ‘the dimension
matches’ cuts our work in half:

2.3.14. Corollary. Let V and V ′ be two F-vector spaces of the same finite dimen-
sion: dim(V ) = dim(V ′) = n < ∞. Let T : V → V ′ be a linear transformation.
The following are equivalent:

(i) T is injective (one-to-one), or equivalently Ker(T ) = {0}.
(ii) T is surjective (onto), or equivalently Im(T ) = V ′.
(iii) T has rank n.
(iv) T is an isomorphism.

Proof. The equivalent formulations of (i) are given in Proposition 2.2.9. The
implications (iv)⇒(i) and (iv)⇒(ii)⇒(iii) are very easy, almost by definition. If (iii)
holds, since Im(T ) ⊆ V ′ is a subspace, knowing that dim(Im(T )) = rank(T ) = n =
dim(V ′) forces Im(T ) = V ′ by Corollary 1.6.32 (ii). So (iii)⇒(ii) as well. So

(i) (iv)ks +3 (ii) ks +3 (iii).

The proofs that (i)⇒(iv) and (ii)⇒(iv) are essentially the same. Let us show that,
under our hypothesis that dim(V ) = dim(V ′), the transformation T is bijective as
soon as it is injective or surjective. By Rank-Nullity Theorem 2.2.6, we have

(2.3.15) dim(Ker(T )) + dim(Im(T )) = n.

So if we suppose (i) then we get from (2.3.15) that rank(T ) = dim(Im(T )) =
n − 0 = n as in (iii), hence T is surjective and therefore bijective. On the other
hand, if we suppose (ii) then we get from (2.3.15) that dim(Ker(T )) = n − n =
0, hence T is injective and therefore bijective, again. In both cases, we know
from Proposition 2.3.8 that T bijective implies that T is an isomorphism. So both
(i)⇒(iv) and (ii)⇒(iv) and we have established all implications. �

2.3.16. Exercise. The assumption that the dimension n is finite is essential
in Corollary 2.3.14. Show using the linear transformations of Exercises 2.1.11
and 2.1.12 that on an infinite-dimensional vector space V we can have T : V → V
that is injective but not surjective, or surjective but not injective, although clearly
V and V have the same dimension (which is infinite here).

2.3.17. Remark. We can use the notion of isomorphism to clarify the notation
W1⊕W2 for subspaces W1,W2 ⊆ V . We defined W1⊕W2 in Remark 1.2.26, for any
vector spaces W1, W2 (subspaces are spaces!) and it meant the ‘external’ cartesian
product W1 ⊕W2 := W1 ×W2 =

{
(w1, w2)

∣∣wi ∈ Wi

}
. On the other hand, we

can construct W1 +W2 =
{
w1 +w2

∣∣wi ∈Wi

}
‘internally’ to V . We have a linear

map S : W1 ×W2 → W1 + W2 which sums the components S(w1, w2) = w1 + w2.
It is surjective by definition of W1 + W2 and its kernel is isomorphic to W1 ∩W2

via W1 ∩W2 → Ker(S) given by w 7→ (w,−w) and inverse Ker(S) → W1 ∩W2

given by (w1, w2) 7→ w1. (This is an easy exercise.) So when W1 ∩W2 = 0, we

have an isomorphism S : W1 ⊕W2 = W1 ×W2
∼→ W1 + W2 and one often writes

W1 ⊕W2 for the latter (inside V ). In other words, when you see W1 ⊕W2 ⊆ V for
subspaces W1,W2 ⊆ V it refers to the subspace W1 +W2 but it also tells you that
W1 ∩W2 = 0. Similarly for W1 ⊕ · · · ⊕Wn inside V , for any n ≥ 2.
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2.4. Matrix of linear transformation

2.4.1. Remark. We proved in Theorem 2.1.23 that every linear transformation
T : V → V ′ is entirely characterized by what it does on a basis of V . We combine
this with a basis of V ′ and reduce the information about T to a table of scalars.

2.4.2. Definition. Let V and V ′ be two F-vector spaces of finite dimension p =
dim(V ) and q = dim(V ′). Let B = {b1, . . . , bp} be an ordered basis of V and B′ =
{b′1, . . . , b′q} be an ordered basis of V ′. Let T : V → V ′ be a linear transformation.

For every j = 1, . . . , p we can write the vector T (bj) of V ′ in coordinates in
the basis B′; this gives a column vector [T (bj)]B′ in Fq. (See Definition 1.6.37 if
necessary.) Let us call this coordinate vector[ a1j

...
aqj

]
:= [T (bj)]B′ .

We cannot just call it

[ a1
...
aq

]
as it of course depends on which j we have chosen, i.e.

which vector bj we consider in the basis B. By definition of [−]B′ this means that
we found scalars a1j , . . . , aqj ∈ F such that the following equality holds in V ′

(2.4.3) T (bj) =

q∑
i=1

aij · b′i.

Recall that j was any index between 1 and p. So we obtain p such columns in Fq;

in other words we obtain a (q× p)-matrix whose j-th column is the above

[ a1j
...
aqj

]
:

A =
[
aij

]
1≤i≤q
1≤j≤p

=

a11 · · · a1j · · · a1p

...
. . .

...
. . .

...
aq1 · · · aqj · · · aqp

 .
We call this the matrix of T with respect to the bases B and B′ and write it as

[T ]B′,B in Mq×p(F).

If we use the notation A = [∗| ∗ | · · · |∗] to indicate the columns of a matrix A then
the definition of [T ]B′,B in condensed form is:

[T ]B′,B =

[ [
T (b1)

]
B′

∣∣∣ [T (b2)
]
B′

∣∣∣ · · · ∣∣∣ [T (bp)
]
B′

]
where B = {b1, . . . , bp}.

2.4.4. Remark. Some authors will denote [T ]B′,B as [T ]B
′

B . It is fine (and students
should be allowed to use either notation). We like the notation [T ]B′,B for it
poetically evokes a matrix of size B′ ×B. We return to this in Remark 2.4.20.

2.4.5. Example. Let T = TA be a linear transformation V = Fp → V ′ = Fq

already given by a matrix A ∈ Mq×p(F). Is the matrix of TA equal to A? The
answer is no in general! It depends on the bases. But if you use the canonical
bases B = {e1, . . . , ep} and B′ = {e′1, . . . , e′q} (3) of V = Fp and V ′ = Fq then

indeed
[
TA
]
B′,B

= A. This is easy to verify since coordinates in canonical bases

are so straightforward and since A · ej is simply the j-th column of A.

3 Here we pay the price for writing e1, e2, . . . independently of the n of Fn.
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2.4.6. Exercise. With notation as in Definition 2.4.2, show that [T ]B′,B is linear
in T , meaning that [T1 + T2]B′,B = [T1]B′,B + [T2]B′,B and [a · T ]B′,B = a · [T ]B′,B
for every T, T1, T2 : V → V ′ linear and a ∈ F. In other words, we obtain a linear
transformation [−]B′,B : Lin(V, V ′)→ Mq×p(F).

Now in full generality, we can recover T from its matrix.

2.4.7. Proposition. Let V, V ′ be F-vector spaces of finite dimension p and q re-
spectively. Let B be a basis of V and B′ a basis of V ′. Let T : V → V ′ be linear
and let A = [T ]B′,B ∈ Mq×p(F) be the matrix of T with respect to those bases.

Let v ∈ V . Let x = [v]B ∈ Fp and y = [T (v)]B′ ∈ Fq be the coordinates of v
and of its image T (v) with respect to our bases. Then we can compute y in terms
of A =

[
aij
]
1≤i≤q,1≤j≤p and x as follows:

yi =

p∑
j=1

aij · xj

for every 1 ≤ i ≤ q. In condensed form, we have for every v ∈ V
(2.4.8)

[
T (v)

]
B′

=
[
T
]
B′,B

·
[
v
]
B

where the right-hand · is matrix multiplication.

Proof. We adopt the notation of Definition 2.4.2. In particular, the bases
are B = {b1, . . . , bp} and B′ = {b′1, . . . , b′q} and the entries aij of A = [T ]B′,B are

characterized by (2.4.3). The meaning of x = [v]B is that we have v =
∑p
j=1 xj · bj

in V . Applying T to this equality, we compute in V ′

T (v) =
∑p
j=1 xj · T (bj) by linearity of T

=
∑p
j=1 xj · (

∑q
i=1 aij · b′i) by construction of the aij in (2.4.3)

=
∑p
j=1

∑q
i=1(xjaij) · b′i by distributivity, etc

=
∑q
i=1

(∑p
j=1(aijxj)

)
· b′i by rearranging terms.

The last equation describes T (v) as a linear combination of b′1, . . . , b
′
q hence we

can read the (unique) coordinate y1, . . . , yq of T (v) in the basis B′ from it. It says
precisely yi =

∑p
j=1(aijxj) for every i = 1, . . . , q as announced in the statement. �

2.4.9. Corollary. Let T : Fp → Fq be a linear transformation. Then T = TA for
a unique (q × p)-matrix A. It is given by A = [T ]B′,B with respect to the canonical
bases B and B′ of V = Fp and V ′ = Fq respectively.

Proof. The beauty of canonical bases is that (if we write x ∈ Fp in columns)
then [x]B = x. Similarly, [y]B′ = y for any y ∈ Fq. Reading (2.4.8) in those
canonical bases then tells us that T (v) = [T (v)]B′ = [T ]B′,B · [v]B = [T ]B′,B · v.
The latter is simply TA(v) for A = [T ]B′,B . For uniqueness, suppose that T = TA
for some A and note that [T ]B′,B = A since A · ej is simply the j-th column of A.
So we can recover A from the linear transformation TA, by computing its matrix
in the canonical bases. �

2.4.10. Remark. The matrix [T ]B′,B is the unique matrix that satisfies (2.4.8).
In other words, in the notation of Proposition 2.4.7, if A ∈ Mq×p(F) is some matrix
that gives the coordinates of the image of every vector v ∈ V by the recipe

[T (v)]B′ = A · [v]B
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then A = [T ]B′,B is the matrix of T constructed in Definition 2.4.2. To see that, it
suffices to plug v = bj in the above equation, for each j = 1, . . . , p in turn. The left-
hand side gives our friend [T (bj)]B′ and the right-hand side gives A · [bj ]B = A · ej
where ej is the j-th canonical vector. And A · ej is the j-th column of A. In short,
the j-th column of A must be [T (bj)]B′ for every j = 1, . . . , p, as in Definition 2.4.2.

2.4.11. Remark. We can express Proposition 2.4.7 by saying that the diagram

(2.4.12)

V
∼

[−]B

//

T

��

Fp

TA

��

V ′
∼

[−]B′
// Fq

‘commutes’. Let us explain this. Horizontally, we have written the isomorphisms
of Theorem 2.3.12 (2) that turn an n-dimensional F-vector space into Fn using
coordinates. Vertically, on the left, we have our linear transformation T which
has no particular property. We can then follow the diagram by composing linear
transformations, starting from Fp in the upper right corner, going left to V via
the inverse of [−]B (that we called SB in Theorem 2.3.10), then moving down to
V ′ via T and finally moving right to Fq via [−]B′ . [The reader should follow this
path with their finger on the above diagram!] This composite Fp → Fq must be
given by multiplication by a matrix, that is by TA, for some (q × p)-matrix A,
by Corollary 2.4.9. That matrix is unique. It depends on our transformation T
but also on the isomorphisms [−]B and [−]B′ , that is, on our choices of bases.
By Proposition 2.4.7 this A is precisely our [T ]B′,B . The commutativity of the
diagram means that if you start with an element v ∈ V in the upper-left corner
and compose the maps along either sides of the diagram you get the same answer
in the bottom-right corner. Indeed, going down and then right gives [T (v)]B′ and
going right and then down gives A · [v]B for A = [T ]B′,B . The fact that the two
agree is exactly (2.4.8).

Another way to summarize our discussion is the following:

2.4.13. Corollary. Let V, V ′ be F-vector spaces, with respective bases B,B′ and
dimensions p = dim(V ), q = dim(V ′), as in Proposition 2.4.7. Then the function

[−]B′,B′ : Lin(V, V ′) // Mq×p(F)

T � // [T ]B′,B

is an isomorphism.

Proof. The linearity of the construction is Exercise 2.4.6. Injectivity is direct
from Equation (2.4.8): If [T ]B′,B = 0 then T (v) = 0 for all v ∈ V , hence T = 0. For
surjectivity, choose A = [aij ] ∈ Mq×p(F) and define T : V → V ′ as the composite
SB′ ◦ TA ◦ [−]B in the spirit of Remark 2.4.11 (but now TA is known and we get T
out of it). Explicitly, define the images T (bj) ∈ V ′ of the basis vectors bj ∈ B by
giving them in coordinates in the basis B′, that is, by setting T (bj) =

∑q
i=1 aij · b′i

as in (2.4.3). This assignment admits a (unique) extension T : V → V ′ that is linear
by Theorem 2.1.23 again. By construction [T (bj)]B′ is the j-th column of A for
all j = 1, . . . , p, hence [T ]B′,B = A. �
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2.4.14. Corollary. Let V and V ′ be finite-dimensional F-vector spaces. Then
Lin(V, V ′) is finite-dimensional and dim(Lin(V, V ′)) = dim(V ) · dim(V ′). �

2.4.15. Remark. So we see that matrix multiplication do not really exist out there
and are then used to do linear transformations. It is rather the other way around.
Linear transformations are out there and, on finite-dimensional vector spaces, they
can be completely encoded in a finite table. We can think of [T ]B′,B as the ‘coor-
dinates’ of the linear transformation. When we want to recover the transformation
from that table, we obtain the formula of Proposition 2.4.7 in coordinates. We
then call this type of formulas matrix multiplication. It is the reason we do matrix
multiplication, its justification. Almost! You may argue that matrix multiplication
is defined more generally than for just a matrix and a column vector as in (2.4.8).
Well, it is true but this also has a conceptual background, as we now explain.

2.4.16. Theorem. Let T : V → V ′ and S : V ′ → V ′′ be two linear transformations
between F-vector spaces V, V ′, V ′′ of finite dimensions p, q, r respectively. Let B be
a basis of V , let B′ be a basis of V ′ and let B′′ be a basis of V ′′. Then the matrix
of S ◦ T : V → V ′′ is given by matrix multiplication

(2.4.17)
[
S ◦ T

]
B′′,B

=
[
S
]
B′′,B′

·
[
T
]
B′,B

.

Proof. Let us name the basis vectors as B′ = {b1, . . . , bp}, B′ = {b′1, . . . , b′q}
and B′′ = {b′′1 , . . . , b′′r}. Let us write A = [aij ] ∈ Mq×p(F) for the matrix [T ]B′,B and
since B is already taken, let us write C = [ck`] ∈ Mr×q(F) for the matrix [S]B′′,B′ .
We want to show that C · A is the matrix [S ◦ T ]B′′,B . We have by construction
of [T ]B′,B and [S]B′′,B′ , following (2.4.3), that

T (bj) =

q∑
i=1

aij · b′i for all j = 1, . . . , p(2.4.18)

S(b′i) =

r∑
k=1

cki · b′′k for all i = 1, . . . , q.(2.4.19)

We want to compute [S ◦ T ]B′′,B one column at a time, as in Definition 2.4.2. Let
1 ≤ j ≤ p and consider (S ◦T )(bj) = S(T (bj)) that we need to write in coordinates
in the basis B′′. Let’s go, we compute in V ′′:

S(T (bj)) = S(
∑q
i=1 aij · b′i) by (2.4.18)

=
∑q
i=1 aij · S(b′i) by linearity of S

=
∑q
i=1 aij ·

(∑r
k=1 cki · b′′k

)
by (2.4.19)

=
∑q
i=1

∑r
k=1(aijcki) · b′′k by distributivity

=
∑r
k=1

(∑q
i=1(ckiaij)

)
· b′′k by rearranging.

And we see that the k-th coordinate of (S ◦ T )(bj) in the basis B′′ = {b′′1 , . . . , b′′r}
is
∑q
i=1(ckiaij) which is indeed the (k, j)-entry of C ·A, as announced. �

2.4.20. Remark. In the important formula (2.4.17) our notation [T ]B′,B reminds
us of the rules about matrix multiplication: Only multiply matrices of size r × q
and q × p for matching q and then the product will be an (r × p)-matrix. This
numerology is now explained: The intermediate basis (called B′ here) should be
the same for the incoming transformation · · · → V ′ and the outgoing one V ′ → · · · .
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2.4.21. Remark. One can give another proof of Theorem 2.4.16, via the asso-
ciativity of matrix multiplication. (The latter is relatively easy to check from the
explicit formulas.) In colloquial terms, Remark 2.4.10 says that if we can prove
that the product matrix [S] · [T ] makes (2.4.8) ‘work’ for the linear transformation
S ◦T then by uniqueness, this product [S] · [T ] must be [S ◦T ]. Writing more care-
fully, Remark 2.4.10 says that in order to show that the product [S]B′′,B′ · [T ]B′,B
is indeed [S ◦ T ]B′′,B , it suffices to check that for every v ∈ V we have

(2.4.22) [(S ◦ T )(v)]B′′ = ([S]B′′,B′ · [T ]B′,B) · [v]B .

We have by Proposition 2.4.7, that for every v ∈ V
(2.4.23) [T (v)]B′ = [T ]B′,B · [v]B .

Applying the same Proposition 2.4.7 to S : V ′ → V ′′ we get

(2.4.24) [S(w)]B′′ = [S]B′′,B′ · [w]B′

for every w ∈ V ′, in particular for w = T (v). If we combine these matrix equations
we get for every v ∈ V that

[(S ◦ T )(v)]B′′ = [S(T (v))]B′′ by definition of S ◦ T
= [S]B′′,B′ · [T (v)]B′ by (2.4.24) for w = T (v)

= [S]B′′,B′ · ([T ]B′,B · [v]B) by (2.4.23)

= ([S]B′′,B′ · [T ]B′,B) · [v]B by associativity.

This is the wanted relation and we conclude that [S]B′′,B′ · [T ]B′,B = [S ◦ T ]B′′,B .

2.4.25. Exercise. Consider T = IdV : V → V and two finite bases B and B′

of V . (Here V ′ = V .) Give necessary and sufficient conditions for [T ]B′,B to be the
identity matrix In.

2.4.26. Corollary. Let T : V → V ′ be a linear transformation between vector
spaces of finite dimension n. Then the following are equivalent:

(i) The transformation T is invertible.
(ii) For all bases B of V and B′ of V ′, the matrix [T ]B′,B ∈ Mn×n(F) of T with

respect to the bases B and B′ is invertible.
(iii) There exists bases B of V and B′ of V ′ such that [T ]B′,B is invertible.

In that case, with notation as in (ii) or (iii), the matrix of T−1 : V ′
∼→ V is

(2.4.27) [T−1]B,B′ =
(
[T ]B′,B

)−1
.

Proof. (i)⇒(ii): Apply Theorem 2.4.16 twice, to the relations T−1 ◦ T = IdV
and T ◦ T−1 = IdV ′ . We get matrix equalities [T−1]B,B′ · [T ]B′,B = [IdV ]B,B = In
and [T ]B′,B · [T−1]B,B′ = [IdV ′ ]B′,B′ = In. (In both cases, it is important to have
the matrix of the identity with respect to twice the same basis.) Hence A = [T ]B′,B
and C = [T−1]B,B′ satisfy A · C = C ·A = In. Which proves (ii), and (2.4.27).

(ii)⇒(iii) is obvious: Pick any bases B and B′.
(iii)⇒(i): Suppose that A = [T ]B′,B is invertible. Recall from Corollary 2.4.13

that [−]B,B′ : Lin(V ′, V )
∼→ Mn×n(F) is an isomorphism. So there exists a unique

linear transformation T ′ : V ′ → V such that [T ′]B,B′ = A−1. Then by Theo-
rem 2.4.16 we know that [T ′ ◦ T ]B,B = A−1 · A = In = [IdV ]B,B which means
(Corollary 2.4.13 again) that T ′◦T = IdV . In the same way, we prove T ◦T ′ = IdV ′ .
Hence T is invertible and T ′ = T−1. �
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2.4.28. Remark. Recall from introductory linear algebra that we have at least
two methods to decide when an n × n-matrix A is invertible. The first is to do
Gauss-Jordan to it and check that we eventually get the identity (that is, the system
A ·x = 0 has only x = 0 as solution). We can also compute the determinant det(A).
And we know that A is invertible if and only if det(A) 6= 0. This is reviewed in
Appendix D.

2.4.29. Exercise. Let B = {b1, . . . , bp} be a basis of V and B′ = {b′1, . . . , b′q} a
basis of V ′. Give a basis C = {Eij}1≤i≤q,1≤j≤p of Lin(V, V ′) where Eij(bk) = δjk ·b′i.
What are the coordinates of a linear transformation T : V → V ′ in the basis C?

2.5. Base change

The results of Section 2.4 depend heavily on the choice of the bases. In this
section, we want to analyze what happens when we change said bases. We could
already ask this question about coordinates, at the end of Section 1.6, but we did
not have the tools to answer it then. Now we do:

2.5.1. Definition. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be two bases of the
same n-dimensional vector space V . The base-change matrix from B to C (or, in
full, for change of coordinates with respect to B into coordinates with respect to C)
is the matrix of the identity tranformation IdV : V → V with respect to those bases:

Q = QC,B :=
[

IdV
]
C,B

.

Expanding Definition 2.4.2, the matrix QC,B ∈ Mn×n(F) is constructed one column
at a time, the j-th column being given by [bj ]C the coordinates of the j-th basis
vector of B in the basis C. In detail, it means that if QC,B = [Qij ]1≤i,j≤n then

(2.5.2) bj =

n∑
i=1

Qij · ci

for every 1 ≤ j ≤ n.

2.5.3. Proposition. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be two bases of
the vector space V and let Q = QC,B the base-change matrix from B to C. Then

(1) For every vector v ∈ V , we have

[v]C = Q · [v]B .

(2) The matrix Q is invertible and Q−1 = QB,C .

Proof. Part (1) is simply the equation [T (v)]B′ = [T ]B′,B · [v]B of Propo-
sition 2.4.7 applied to T = IdV and V ′ = V and B′ = C. Part (2) is simply
Corollary 2.4.26 applied to T = IdV , which here tells us that Q is invertible and
(QC,B)−1 = ([IdV ]C,B)−1 = [Id−1

V ]B,C = [IdV ]B,C = QB,C . �

The reader has done such base-changes in introductory linear algebra and all
those examples remain valid here. Let us do another elementary example in slightly
different clothes.

2.5.4. Example. We want to write any vector aX2 + bX + c in coordinates in the
ordered basis B = {X + 1, X2 + 1, X2 + X} of the real vector space V =

{
P ∈

R[X]
∣∣ deg(P ) ≤ 2

}
. We also have a canonical basis C = {1, X,X2} of V in which
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it is very easy to write coordinates. So Q = QC,B =
(

1 1 0
1 0 1
0 1 1

)
is easy to produce.

By Exercise 2.3.4 we compute Q−1 by doing Gauss-Jordan on [Q|In]:(
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

)
 
(

1 1 0 1 0 0
0 −1 1 −1 1 0
0 1 1 0 0 1

)
 
(

1 0 1 0 1 0
0 1 −1 1 −1 0
0 0 2 −1 1 1

)
 
(

1 0 0 0.5 0.5 −0.5
0 1 0 0.5 −0.5 0.5
0 0 1 −0.5 0.5 0.5

)
.

Hence QB,C = Q−1
C,B = 1

2

(
1 1 −1
1 −1 1
−1 1 1

)
. So if v = aX2 + bX+ c then [v]C =

[
c
b
a

]
and

therefore [v]B = QB,C · [v]C = 1
2

(
1 1 −1
1 −1 1
−1 1 1

)
·
[
c
b
a

]
= 1

2

[
−a+b+c
a−b+c
a+b−c

]
. We can verify

that these are indeed the coordinates of v in the basis B = {X+1, X2 +1, X2 +X}:
−a+ b+ c

2
·(X+1)+

a− b+ c

2
·(X2 +1)+

a+ b− c
2

·(X2 +X) = aX2 +bX+c = v.

2.5.5. Theorem. Let T : V → V ′ be a linear transformation between finite-dimen-
sional F-vector spaces. Let B and C be two bases of V . Let B′ and C ′ be two bases
of V ′. Then we have the following relation between the two matrices of T , obtained
by using respectively the pair B,B′ and the pair C,C ′ of bases:

[T ]C′,C = QC′,B′ · [T ]B′,B ·QB,C
where QB,C and QC′,B′ are the base-change matrices of Definition 2.5.1.

Proof. We apply Theorem 2.4.16 to the composition T = IdV ′ ◦T ◦ IdV . This
looks rather trivial but we let the bases vary as we go. It reads:

(2.5.6) [T ]C′,C = [IdV ′ ]C′,B′ · [T ]B′,B · [IdV ]B,C .

This is the announced formula since QC′,B′ = [IdV ′ ]C′,B′ and QB,C = [IdV ]B,C . �

2.5.7. Remark. It is important not to mix up QB,C and QC,B in those formulas!
Beware of calling all of them Q without paying attention. Also, it is important to
remember that we read matrix multiplication ‘from right to left’: The right-most
matrix is the first one to ‘hit’ the column vector. Reading (2.5.6) in this order,
we see that to describe T from coordinates in the basis C to coordinates in the
basis C ′, we first change coordinates from the basis C to the basis B, then use
[T ]B′,B (at which point we ‘are’ in coordinates in the basis B′) and finally change
coordinates from B′ to C ′.

2.5.8. Corollary. Let T : V → V be a linear transformation from V to itself. Let
B and C be two bases of V and Q = QC,B the base-change matrix from B to C.
Then

[T ]C,C = Q · [T ]B,B ·Q−1.

Proof. This is immediate from the previous proposition with V ′ = V , B′ = B
and C ′ = C. Thus QC′,B′ = QC,B is our Q and QB,C = Q−1

C,B is our Q−1. �

2.5.9. Remark. It is convenient, although slightly abusive, to write [T ]B instead
of [T ]B,B when we consider an operator T : V → V (i.e. a linear transformation
from V to itself) and the same basis B at the two ends of it (i.e. B′ = B). In that
case, the above formula becomes

[T ]C = Q · [T ]B ·Q−1 where Q = QB,C .

2.5.10. Exercise. Let V =
{
P ∈ R[X]

∣∣ deg(P ) ≤ 2
}

as in Example 2.5.4. Let
T : V → V be the derivative with respect to X. Compute the matrix [T ]C of T with
respect to the canonical basis C and compute [T ]B for B = {X+1, X2+1, X2+X}.
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2.5.11. Definition. Recall that two square matrices A, Ã ∈ Mn,n(F) are called

similar if there exists an invertible Q ∈ Mn×n(F) such that Ã = Q ·A ·Q−1.

2.5.12. Exercise. Write A ∼ Ã to say that A and Ã are similar. Show that ∼ is
an equivalence relation on Mn×n(F).

2.6. Dual space*

We have seen in Proposition 2.1.17 that, given F-vector spaces V and V ′, the
set LinF(V, V ′) of F-linear transformations from V to V ′ is itself an F-vector space.
The special case of this construction where V ′ = F is particularly useful.

2.6.1. Definition. Let V be an F-vector space. The dual of V is the vector
space V # = LinF(V,F). Its vectors are linear transformations ` : V → F. We add
them and we multiply them by scalars, as we do with functions: (` + `′)(v) =
`(v) + `′(v) and a · `)(v) = a · `(v) for all v ∈ V . For instance, the zero element 0V #

is the linear map V → F that maps all vectors to zero: 0V #(v) = 0F for all v ∈ V .

2.6.2. Remark. Some authors will write V ∗ or V ∨ for the dual.
The vector space V # is defined abstractly. It does not mean it is difficult to

use. It just means it is difficult to describe as a simple vector space even when V
itself is rather simple, like Fn. We can do it up to isomorphism though.

2.6.3. Proposition. If V is has finite dimension n then V # has finite dimension n.

Proof. This is Corollary 2.4.14 with V ′ = F has dimension one. �

2.6.4. Example. Let V = Fn for some n ≥ 1. For every a = (a1, . . . , an) ∈ Fn

we can define `a : Fn → F by `a(x) = a1x1 + · · · + anxn for all x = (x1, . . . , xn)

in Fn. It is easy to see that `a : V → F is linear. Hence `a is a vector in (Fn)#.

One can also verify that T : V → V # defined by a 7→ T (a) = `a is linear (in a)
and is actually an isomorphism. Indeed, note that `a(ei) = ai where e1, . . . , en
is the canonical basis. Hence T (a) = 0 forces a1, . . . , an = 0, hence a = 0. So
Ker(T ) = {0} and T : V → V # is injective. It follows that T is an isomorphism
by Corollary 2.3.14 since we already know that dim((Fn)#) = n = dim(Fn). We
can also make surjectivity explicit: Given ` : V → F linear, it is characterized by
the images a1 := `(e1), . . . , an := `(en) in F. These scalars are simply the entries
of the matrix [`]C,B of ` with resepct to the canonical bases B and C = {1} (the
canonical basis of V ′ = F). We know that ` = Ta for instance via Corollary 2.4.9.
Hence we have an isomorphism

T : Fn ∼ // (Fn)#

a � // `a.

The above was the case of a free vector space on a finite set with n elements.
The proof actually gives:

2.6.5. Exercise. Let I be an arbitrary set and V = F(I). Show that the dual
V # = (F(I))# is (canonically) isomorphic to the vector space FI of functions I → F.

2.6.6. Definition. Let B be a basis of a vector space V . For every b ∈ B denote
by b# : V → F the unique linear transformation (Theorem 2.1.23 again) such that
b#(b′) = δb,b′ for every b′ ∈ B. This defines an element b# ∈ V # that we call the
dual vector of the basis vector b (with respect to that basis B).
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2.6.7. Remark. In other words, b#(
∑
b∈B ab · b) = ab. The transformation

b# : V → F sends a vector v to its b-th coordinate. This notation b# is slightly
misleading as b# does not only depend on b but really on the whole basis, as the
coordinates of v do depend on the whole of B.

2.6.8. Proposition. Let V be a finite-dimensional F-vector space with basis B =

{b1, . . . , bn}. Then {b#1 , . . . , b#n } is a basis of V #. (It is called the dual basis of B.)

We have an isomorphism V
∼→ V # mapping each bj in B to b#j . (4)

Proof. This is similar to Example 2.6.4. By our friend Theorem 2.1.23 we

can define T : V → V # by deciding what T (bj) is. Here we pick T (bj) = b#j for

all j = 1, . . . , n. We claim that T is an isomorphism. Since dim(V ) = dim(V #)
by Proposition 2.6.3, it suffices to show that T is injective (Corollary 2.3.14). Let
v ∈ V such that T (v) = 0. Writing v = a1 · b1 + · · · + an · bn, our claim is that

a1 · b#1 + · · ·+ an · b#n = 0 in V # and we want to show that all ai are zero (i.e. that
v = 0). Just evaluate this linear transformation 0V # : V → F on bi. It gives in F

0 = 0V #(bi) by definition of 0 in V #

= (
∑n
j=1 aj · b

#
j )(bi) since we assume

∑n
j=1 cj · b

#
j = 0

=
∑n
j=1 aj · b

#
j (bi) unpacking the linear combination

=
∑n
j=1 aj · δji by definition of b#j

= 0 + · · ·+ 0 + ai · 1 + 0 + · · ·+ 0 = ai

and this holds for all i = 1, . . . , n. Hence the result. �

2.6.9. Remark. The construction V 7→ V # is what we call contravariant. (5) It
means the following. Given a linear transformation T : V1 → V2 (yes, V2, we are

not going to deal with V ′
#

), we can define a new linear transformation T# between
the duals of the given spaces. However, it goes backwards:

T# : V #
2

// V #
1

` � // ` ◦ T.

Indeed, spelling this out slowly, a vector ` ∈ V #
2 is by definition of V # = Lin(V,F)

just a linear transformation ` : V2 → F. The composition ` ◦ T is then a linear

transformation V1 → V2 → F, that is, an element of V #
1 . We call it T#(`) = ` ◦ T .

This T# is linear (in `) since − ◦ T is linear (composition − ◦ − is linear in each
variable, separately, i.e. when the other is fixed). We have the formulas – beware
the reversal of order in the second

(IdV )# = IdV # and (S ◦ T )# = T# ◦ S#.

The first is clear. For the second, we have (S ◦ T )#(`) = ` ◦ (S ◦ T ) = (` ◦ S) ◦ T =
(S#(`)) ◦ T = T#(S#(`)) = (T# ◦ S#)(`).

4 This isomorphism is non-canonical meaning that it depends on the choice of the basis B in

a significant way: Other bases will give different isomorphisms.
5To be precise it is a contravariant functor.
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2.6.10. Remark. Because of the ‘reversal of arrows’ discussed in the previous
remark, the isomorphism V

∼→ V # of Proposition 2.6.8 is not natural. This means
that the following diagram does not commute in general (for some T ):

V
∼ //

T

��

×

V #

W
∼ // W#

T#

OO

where the horizontal isomorphisms are those of Proposition 2.5.3 for some choice
of bases of V and W , assumed finite-dimensional.

However, we can say something about the matrix of the dual transformation T#

as long as we use the dual bases of Definition 2.6.6 and Proposition 2.6.8.

2.6.11. Proposition. Let V and W be finite-dimensional F-vector spaces. Let B
be a basis of V and C a basis of W . Recall the dual bases, B# of V #, and C#

of W#. Let T : V → W be linear and T# : W# → V # be the dual transformation
(T#(`) = `◦T ) of Remark 2.6.9. Then the matrix of T# with respect to C# and B#

(watch the order) is the transpose of the matrix of T with respect to B and C:[
T#
]
B#,C# =

([
T
]
C,B

)t
.

Proof. Write B = {b1, . . . , bm} and C = {c1, . . . , cn} where m = dim(V )
and n = dim(W ). To construct [T ]C,B = A = [aij ]i,j ∈ Mm×n(F) as in (2.4.3), we
write each T (bj) in coordinates, that is, we have for every j = 1, . . . ,m

(2.6.12) T (bj) =

n∑
i=1

aij · ci.

The transpose At ∈ Mm×n is given by (At)p,q = aq,p. So the claim is that for every
q = 1, . . . , n we should have

(2.6.13) T#(c#q ) =

m∑
p=1

(At)pq · b#p =

m∑
p=1

aqp · b#p .

This is an equality in V #, i.e. between two linear transformations V → F. So it
suffices to test it on each basis vector bj of V , for j = 1, . . . ,m. We have (in F)

(T#(c#q ))(bj) = (c#q ◦ T )(bj) by definition of T#

= c#q (T (bj)) by definition of ◦

= c#q (
∑n
i=1 aij ci) by (2.6.12)

=
∑n
i=1 aij δqi by definition of c#q

= aqj by definition of δqi

=
∑n
p=1 aqp δpj by definition of δpj

=
∑n
p=1 aqp b

#
p (bj) by definition of b#p : V → F.

= (
∑n
p=1 aqpb

#
p )(bj) rewriting the linear combination.

This establishes the claim (2.6.13) and the result. �

Is there such a thing as too much of a good thing?
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2.6.14. Proposition. Let V be an F-vector space. Its double-dual is the dual of
its dual, V ## := (V #)#. There is a canonical F-linear transformation

α = αV : V −→V ##

that maps a vector v ∈ V to α(v) : V # → F defined by (α(v))(`) = `(v). (In other
words, α(v) is ‘evaluation at v’). Moreover:

(1) αV : V → V ## is injective. (6)
(2) αV is an isomorphism if V is finite dimensional.
(3) α is natural in V , meaning that for every linear transformation T : V → W ,

with dual T# : W# → V # and double-dual T## = (T#)# : V ## → W##, the
following diagram of vector spaces commute:

V
αV //

T

��

V ##

T##

��

V
αW
// W## .

Proof. It is easy to verify that α is well-defined (i.e. α(v) : V # → F is indeed
linear for every v) and that α is linear (in v). We leave these verifications to the
reader.

For (1), let B be a basis of V . Let v ∈ V such that α(v) = 0. This means
that `(v) = 0 for every ` : V → F. In particular, this holds for ` = b# with b ∈ B
(Definition 2.6.6). If we write v =

∑
b∈B ab · b with ab ∈ F almost all zero, then

ab = b#(v) = 0 for all b. Hence v = 0. In short, Ker(α) = {0}, so α is injective.
For (2), we know by Proposition 2.6.3 that when V is finite-dimensional then so

is V # and dim(V #) = dim(V ) and thus, applying this to V #, we know that V ##

is finite-dimensional and dim(V ##) = dim(V #) = dim(V ). Hence the injective
α : V → V ## is automatically an isomorphism by Corollary 2.3.14.

Part (3) is an exercise on the definitions. Let v ∈ V and consider its two images
under the two paths in the square: either T##(αV (v)) or αW (T (v)). These are
two vectors in W##, in other words, these are linear transformations W# → F. So
we compare them by evaluating them on all ` ∈W#:(

T##(αV (v))
)
(`) = (αV (v) ◦ T#)(`) by definition of (T#)#

= (αV (v))(T#(`))

= (T#(`))(v) by definition of αV (v)

= (` ◦ T )(v) by definition of T#

= `(T (v))

=
(
αW (T (v))

)
(`) by definition of αW (T (v)).

As ` was arbitrary, we have the claim. �

6 At least when V has a basis, which is always true with the Axiom of Choice.
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2.7. Quotients*

In this section V is an F-vector space.

2.7.1. Remark. Given a subspace W ⊆ V we may wonder if there is a way of
producing a new vector space V ′, that receives V by a linear transformation V → V ′

in such a way that all vectors of W are mapped to zero in V ′. The answer is trivial:
Just map everything to zero. So the better question is: Can we do this in a ‘optimal’
way: We want to send W to zero but nothing else. Well, mapping W to zero has
consequences on other vectors too. Indeed, if two vectors x and y in V are such
that x−y belongs to W then necesarily x and y will be sent to the same image by T
since T (x) − T (y) = T (x − y) by linearity. So ‘killing W ’ forces many apparently
different vectors to ‘become the same’. Let us formalize this.

2.7.2. Lemma. Let W ⊆ V be a subspace of V . Define a relation ∼ on the vectors
of V by setting x ∼ y if x− y ∈W . Then ∼ is an equivalence relation:

(a) for all x ∈ V we have x ∼ x;
(b) for all x, y ∈ V , if x ∼ y then y ∼ x;
(c) for all x, y, z ∈ V if x ∼ y and y ∼ z then x ∼ z.

Proof. (a) holds because 0 ∈ W . (b) holds because (y − x) = −(x − y) and
−W ⊆W . And (c) holds because (x− z) = (x− y) + (y− z) and W +W ⊆W . �

2.7.3. Example. Of course the equivalence relation depends on W . For instance:

(1) If W = 0 then x ∼ y if and only if x = y.
(2) If W = V then x ∼ y for all x, y ∈ V .

2.7.4. Definition. LetW ⊆ V be a subspace. Define V/W as the set of equivalence
classes with respect to ∼:

V/W := V/ ∼=
{

[x]W
∣∣x ∈ V }.

Formally this is a subset of the set of subsets of V , where [x]W =
{
y ∈ V

∣∣ y ∼ x}
is the equivalence class of x, sometimes denoted [x]∼. Different x ∈ V can give the
same class [x]W . By definition [x]W = [y]W if and only if x ∼ y. Explicitly, the
class of x is given by [x]W = x + W :=

{
x + w

∣∣w ∈ W }
and some authors will

write everywhere x+W instead of [x]W .
This set V/W is called the quotient of V by W (or later the quotient space once

we know that V/W is itself a vector space). When x ∼ y, that is, when x− y ∈W ,
we also say that x and y are congruent modulo W .

Note that we have an obvious function V → V/W , that we call the projection,
which is defined by

proj = projW : V // V/W

x � // [x]W .

It simply sends every vector to its class modulo W . It is surjective by definition.

2.7.5. Example. Let us review our trivial examples. For W = 0, the quotient
V/0 = V is the same as V since in that case ∼ is just equality. And of course, the
projection is the identity.

For W = V , all vectors are equivalent, for instance, all equivalent to zero. So
V/V = {[0]V } has a unique element. (And there is no much choice for proj!)

In both cases, V/W is a vector space. This is true in general.
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2.7.6. Proposition. Let W ⊆ V be a subspace and consider the quotient V/W .
Then V/W admits a unique structure of F-vector space, that is, a unique addition
and scalar action, such that the projection projW : V → V/W is linear. Explicitly,
[x]W + [y]W = [x+ y]W and a · [x]W = [a · x]W for all x, y ∈ V and a ∈ F.

Proof. If we want proj : V → V/W , which is defined by x 7→ [x]W , to be
linear then indeed we must have the formulas [x]W +V/W [y]W = [x + y]W and
a ·V/W [x]W = [a·x]W of the statement. So there is at most one such F-vector space
structure on V/W . We need to see that these +V/W and ·V/W are well-defined and
they do satisfy Axioms (VS1)-(VS8) of Definition 1.2.1. The axioms are actually
very easy and will be left to the reader. The critical point is that those operations
are well-defined. Let us explain this slowly. We write [−] instead of [−]W for
readability. If we take two elements X,Y ∈ V/W and we want to define X + Y as
we did above, we write X = [x] as the equivalence class of some x ∈ V and Y = [y]
as the equivalence class of some y ∈ V and we decide that X+Y will be [x+y] the
equivalence class of x+ y, added in V . The problem is that this might depend on
the choice of x and y. So we need to prove that if X = [x′ and Y = [y′] for other
representatives x′ and y′ in their class then x′ + y′ will give the same answer. In
general, x + y and x′ + y′ will be different. This is not important, what we need
is that [x + y] = [x′ + y′]. In short we need to prove that for all x, x′y, y′ ∈ V the
following holds true:

If x ∼ x′ and y ∼ y′ then x+ y ∼ x′ + y′.

The assumptions are that x− x′ ∈W and y − y′ ∈W . Then (x+ y)− (x′ + y′) =
(x− x′) + (y− y′) also belongs to W since W +W ⊆W by (SS2). So the addition
[x]+[y] = [x+y] is well defined on V/W . Similarly, the verification that a·[x] = [a·x]
is well-defined for a ∈ F boils down to check that if x ∼ x′ then a · x ∼ a · x′. The
hypothesis is x − x′ ∈ W and then a · x − a · x′ = a · (x − x′) is still in W since
F ·W ⊆W by (SS3). �

2.7.7. Remark. In particular, the zero vector in V/W is simply [0]W the class of
zero (which explicitly is [0]W = 0 +W = W as a subset of V ).

Let us identify some examples.

2.7.8. Example. Let V1 and V2 be two F-vector spaces and consider the (external)
direct sum V1⊕ V2 of Exercise 1.2.25. Let W = V1⊕ 0 (which is really just V1 seen
inside V1⊕V2 = V1×V2 as V1×{0}). So we simply write W = V1 ⊆ V1⊕V2. Then
(V1 ⊕ V2)/V1 is isomorphic to V2. Indeed, saying that (x1, x2) ∼ (x′1, x

′
2) means

that (x1 − x′1, x2 − x′2) ∈ V1 ×{0}, that is, x2 = x′2. So we get a well-defined linear
transformation T : (V1 ⊕ V2)/V1 → V2, [(x1, x2)] 7→ x2. It is an isomorphism with
inverse T ′ : V2 → (V1 ⊕ V2)/V1 defined by T ′(y) = [(0, y)].

This examples illustrates how V/W is in spirit the difference of V and W . Here
is another fact supporting this intuition:

2.7.9. Proposition. Let W ⊆ V be a subspace. The kernel of the surjective
linear transformation proj : V → V/W is exactly W . Consequently, if V is finite
dimensional then so is V/W and dim(V/W ) = dim(V )− dim(W ).

Proof. We already know that proj : V → V/W is linear and surjective. For
x ∈ V we have x ∈W if and only if x ∼ 0 if and only if [x]W = [0]W if and only if x ∈
W . Hence Ker(proj) = W indeed. If dim(V ) <∞ then Rank-Nullity Theorem 2.2.6
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applied to T = proj tells us that Im(proj) is finite-dimensional and dim(Ker(proj))+
dim(Im(proj)) = dim(V ). Since Ker(proj) = W by the above and since Im(proj) =
V/W by surjectivity, we have the second claim of the statement. �

We now want to apply our quotient construction to a particular subspace: the
kernel of a linear transformation T .

2.7.10. Proposition. Let T : V → V ′ be a linear transformation. Then T induces
a well-defined isomorphism

T̄ : V/Ker(T )
∼ // Im(T )

[x]Ker(T )
� // T (x).

Proof. Let W = Ker(T ). Let us see that T̄ is well-defined. Suppose that
[x]W = [x′]W , that is, x ∼ x′ are two representatives of the same equivalence class
modulo W = Ker(T ). We need to show that T (x) = T (x′). But indeed, x ∼ x′

means x−x′ ∈ Ker(T ) hence 0 = T (x−x′) = T (x)−T (x′) by linearity of T . Since
clearly T̄ ([x]) = T (x) belongs to Im(T ) in V ′, the function T̄ : V/Ker(T )→ Im(T )
is well-defined. It is linear. Let us do this verification to familiarize ourselves with
the structure on V/W . Let n ∈ N and [x1], . . . , [xn] ∈ V/W be n vectors in the
source of T̄ and a1, . . . , an be n scalars. Compute in Im(T ), that is, in V ′:

T̄
(∑n

i=1 ai · [xi]
)

= T̄
(
[
∑n
i=1 ai · xi]

)
by structure of V/W

= T (
∑n
i=1 ai · xi) by definition of T̄

=
∑n
i=1 ai · T (xi) by linearity of T

=
∑n
i=1 ai · T̄ ([xi]) by definition of T̄ .

It can be useful to some readers to see that T̄ is the (unique) factorization of T
via V/Ker(T ), in that the following diagram of linear transformations commutes:

V
T //

proj

��

Im(T ) ⊆ V ′.

V/Ker(T )

T̄

88

Clearly, T̄ is surjective onto Im(T ). (We do not claim that T̄ is surjective on V ′.)
If y ∈ Im(T ) then y = T (x) for some x ∈ V and then y = T̄ ([x]) ∈ Im(T̄ ).

Finally, T̄ is injective by construction. If [x] ∈ Ker(T̄ ) then T (x) = T̄ ([x]) = 0
by assumption, hence x ∈ Ker(T ) = W which says that [x] = 0. �

2.7.11. Corollary. Let T : V → V ′ be a surjective linear transformation. Then T
induces an isomorphism T̄ : V/Ker(T )

∼→ V ′. �

In summary, V/W is characterized by the fact that it comes with a surjec-
tive linear transformation V → V/W whose kernel is W . Indeed, this holds with
proj : V → V/W by Proposition 2.7.9. And conversely, if T : V → V ′ is another
surjective linear transformation with Ker(T ) = W then the above corollary says
that V ′ ' V/W . (In fact, since T̄ ◦proj = T , even the T is uniquely characterized.)

2.7.12. Remark. For every subspace W ⊆ V we have a (non-canonical) isomor-
phism V ' W ⊕ (V/W ). More precisely, suppose given a section S : V/W → V of
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proj : V �V/W , that is, a linear transformation S : V/W → V such that proj ◦S =
IdV/W . (Such an S always exists if we admit that V/W has a basis B, e.g. under
the axiom of choice or if V , hence V/W , is finite dimensional. It suffices to choose
a representative S(b) in V of each basis element b ∈ B, that is, write b = [S(b)]
for S(b) ∈ V , for all b ∈ B, and use Theorem 2.1.23 to extend S to the whole
of V/W as usual.) Then we claim that W ′ = Im(S) satisfies W ⊕ W ′ = V , or
in other words (Remark 2.3.17) W + W ′ = V and W ∩W ′ = 0. Indeed, for ev-
ery x ∈ V we have x = (x − S(proj(x))) + S(proj(x)) and x − S(proj(x)) ∈ W
since proj(x − S(proj(x))) = proj(x) − proj(S(proj(x))) = proj(x) − proj(x) = 0
in V/W . Also, if x ∈ W ∩ W ′ then x = S(y) for some y ∈ V/W which is
y = proj(S(y)) = proj(x) = 0 since x ∈W and so x = S(y) = S(0) = 0.

2.8. Tensor product*

A useful construction with vector spaces is the tensor product V ⊗ W . It
formalizes some ‘rules’ we want to have. Let us make a ‘wish list’ and then see how
this is satisfied.

2.8.1. Remark. Let V and W be two F-vector spaces. We want to construct a
new vector space V ⊗W that is ‘natural’ enough and has dimension the product
of the dimensions of V and W . In other words, we would like that if B = {bi}i∈I
is a basis of V and C = {cj}j∈J is a basis of W then V ⊗W would have a basis
consisting of B × C: all pairs of (bi, cj) for i ∈ I and j ∈ J . We shall denote this
basis element bi ⊗ cj in V ⊗W . More generally, we wish to have elements v ⊗ w
in V ⊗W for all v ∈ V and w ∈ W . If we think of ⊗ as a product then these (as
of yet undefined) elements v ⊗ w should satisfy some rules, like for instance:

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w and v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

Also, we would like for every scalar a ∈ F that

(a · v)⊗ w = v ⊗ (a · w)

for the latter is probably going to be a · (v ⊗ w). Can we make that happen?

2.8.2. Definition. Let V and W be F-vector spaces. Consider the free F-vector
space F(V×W ) on the set V ×W , ignoring the vector space structures of V and W
for now. Recall that F(V×W ) consists of functions f : V ×W → F that are zero
almost everywhere:

{
(v, w) ∈ V ×W

∣∣ f(v, w) 6= 0
}

is finite.

For each pair (v, w) ∈ V ×W consider the basis vector ev,w ∈ F(V×W )

ev,w : V ×W // F

(v′, w′)
� // δv,v′ · δw,w′ =

{
1 if (v′, w′) = (v, w)
0 otherwise.

Consider now the subspace R ⊆ F(V×W ) spanned by all the following elements:

(a) ev+v′,w − ev,w − ev′,w for all v, v′ ∈ V and w ∈W ;
(b) ev,w+w′ − ev,w − ev,w′ for all v ∈ V and w,w′ ∈W ;
(c) ea·v,w − a · ev,w for all v ∈ V , w ∈W and a ∈ F;
(d) ev,a·w − a · ev,w for all v ∈ V , w ∈W and a ∈ F.
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Then define the tensor product V ⊗W as the quotient

V ⊗W = (F(V⊗W ))/R.

(The letter R stands for ‘relations’, not for real numbers.) One sometimes writes
V ⊗F W to keep track of which field we work with. By construction, V ⊗W is an
F-vector space.

For every v ∈ V and w ∈ W we denote by v ⊗ w the class [ev,w]R of the

vector ev,w ∈ F(V×W ) modulo the subspace R.

2.8.3. Remark. At this stage, V ⊗W could be anything: It could be a monster –
after all we took the free vector space on a typically huge set V ×W – or it could
be zero – how do we know that R is not the whole of F(V×W ) for instance? Let us
address both concerns, to get comfortable with this mysterious space V ⊗W .

2.8.4. Proposition. In V ⊗W we have the following formulas:

(a) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w for all v, v′ ∈ V and w ∈W ;
(b) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ for all v ∈ V and w,w′ ∈W ;
(c) a · (v ⊗ w) = (a · v)⊗ w = v ⊗ (a · w) for all v ∈ V , w ∈W and a ∈ F.

Proof. In each equation, the difference between the representative of the
left-hand side and the representative of the right-hand side belongs to R. Let
us check (a) for instance. The meaning of (v + v′)⊗w is the class [ev+v′,w]R mod-
ulo R. Similarly, the meaning of v⊗w+v′⊗w is [ev,w]R+[ev′,w]R and the latter is
[ev,w + ev′,w]R by definition of the sum in the quotient. Now the difference between
those representatives of the two classes ev+v′,w−(ev,w+ev′,w) is precisely one of the
generators of R by Definition 2.8.2 (a). In particular, this difference belongs to R
and therefore the two classes are equal: [ev+v′,w]R = [ev,w]R+[ev′,w]R by definition
of the quotient. �

2.8.5. Proposition. Any vector in V ⊗W is a finite sum (v1⊗w1)+ · · ·+(vr⊗wr)
for r ∈ N and v1, . . . , vr ∈ V and w1, . . . , wr ∈W .

Proof. The vectors ev,w form a basis of F(V×W ) by Exercise 1.6.4. So every

vector of F(V×W ) is a linear combination of the form a1 ·ev1,w1
+· · ·+ar ·evr,wr . This

remains true in the quotient (after all F(V×W ) → F(V×W )/R is linear). However,
in the quotient one more thing happens: [a · ev,w]R = a · (v ⊗ w) = (a · v) ⊗ w by
Proposition 2.8.4 (c). (We could also absorb a in the second factor.) In any case, it
follows that every vector in V ⊗W is of the form (a1 · v1)⊗w1 + · · ·+ (ar · vr)⊗wr
as announced. �

2.8.6. Remark. It is a common mistake to think of vectors in V ⊗ W as just
so-called simple tensors v ⊗w. Proposition 2.8.5 tells us that any vector is a finite
sum of simple tensors.

Here is the so-called universal property of V ⊗W . The function V ×W → V ⊗W ,
(v, w) 7→ v ⊗ w) is bilinear (i.e. satisfies properties (a)-(d) of Proposition 2.8.4, or
is linear in each variable separately). In fact, V ⊗W is the ‘best’ recipient of a
bilinear function out of V ×W . Here is what this means.

2.8.7. Proposition. Let U be an F-vector space and let t : V × W → U be a
function that is bilinear, i.e.

(i) For each fixed w ∈W , the function V → U given by v 7→ t(v, w) is linear.
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(ii) For each fixed v ∈ V , the function W → U given by w 7→ t(v, w) is linear.

Then there exists a unique linear T : V ⊗W → U such that T (v⊗w) = t(v, w) for
all v ∈ V and w ∈W .

Proof. The transformation T is unique by Proposition 2.8.5: Once we have
T (x + y) = T (x) + T (y) and T (v ⊗ w) = t(v, w) then we know T on any sum of
simple tensors.

Let us construct such a T . Since
{
ev,w

∣∣ (v, w) ∈ V ×W
}

is a basis of F(V×W )

we can define (Theorem 2.1.23) a linear transformation T0 : F(V×W ) → U by decid-
ing that T0(ev,w) = t(v, w). To show that T0 descends to the quotient by R

F(V×W ) T0 //

����

U

F(V×W )/R = V ⊗W

T
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we need to show that T0(R) = 0. Since T0 is linear it suffices to verify that T0

sends all generators of R (see Definition 2.8.2) to zero. This is immediate by
bilinearity of t. For instance, for a generator of type (c) we have T0(ea·v,w − a ·
ev,w) = T0(ea·v,w)− a · T0(ev,w) = t(a · v, w)− a · t(v, w) = 0 by (i). Hence we can
define T ([x]R) = T0(x) since the latter does not depend on the representative x
by T0(R) = 0. (See the ‘summary’ at the end of Section 2.7.) Direct computation
gives T (v ⊗ w) = T ([ev,w]R) = T0(ev,w) = t(v, w) as wanted. �

2.8.8. Proposition. Let B be a basis of V and C be a basis of W . Then B⊗C ={
b⊗ c

∣∣ b ∈ B, c ∈ C } is a basis of V ⊗W that is in bijection with B × C (i.e. all

b⊗ c are distinct in V ⊗W ). (7) Hence if V and W are finite-dimensional then

dim(V ⊗W ) = dim(V ) · dim(W ).

Proof. Let us verify that all b⊗c are distinct. Let b 6= b′ be in B and c, c′ ∈ C
and let us see that b⊗ c 6= b′ ⊗ c′. (A similar argument proves that b⊗ c 6= b′ ⊗ c′
if c 6= c′.) Consider the dual vectors b# : V → F and c# : W → F, which pick
the ‘b-th’ coordinate and ‘c-th’ coordinate respectively. Let t : V × W → F be
defined by t(v, w) = b#(v) · c#(w). It is easy to see that t is bilinear. So by
Proposition 2.8.7 there exists a linear transformation T : V ⊗ W → F such that
T (v ⊗ w) = t(v, w) = b#(v) · c#(w). But then T (b ⊗ c) = 1 · 1 = 1 whereas
T (b′ ⊗ c′) = 0 · c#(c′) = 0. In particular b⊗ c 6= b′ ⊗ c′.

We can use the same construction to show that B ⊗C is linearly independent.
Suppose that (b1, c1), . . . , (br, cr) ∈ B×C are r distinct pairs and that a1, . . . , ar ∈ F
are such that

(2.8.9) a1 · (b1 ⊗ c1) + · · ·+ ar · (br ⊗ cr) = 0

in V ⊗W . (Note that we are not going to spell out what it means for a class to
be zero in the quotient modulo R. That would be a nightmare.) We construct
T : V ⊗W → F as in the first part of the proof for b = b1 and c = c1. And we apply

T to the linear combination (2.8.9). Since T (bi⊗ ci) = b#1 (bi) · c#1 (ci) is zero unless
both bi = b1 and ci = c1, we see that a1 = 0. Repeating for every bj ⊗ cj we get
aj = 0 for all j = 1, . . . , r.

7 Beware that B ⊗ C is not a tensor product of vector spaces of course, just a notation for
the set of all b⊗ c in V ⊗W , for all b ∈ B and c ∈ C.



2.8. TENSOR PRODUCT* 61

Finally, B⊗C spans V ⊗W is easy. We already know that every vector in V ⊗W
is a sum of simple tensors. Now for v ∈ V and w ∈W we have v =

∑m
i=1 xi · bi for

some x1, . . . , xm ∈ F and b1, . . . , bm ∈ B and similarly w =
∑n
j=1 yj · cj for some

y1, . . . , yn ∈ F and c1, . . . , cn ∈ C. Then by bilinearity of ⊗, we have

v ⊗ w =

m∑
i=1

n∑
j=1

(xiyj) · bi ⊗ cj .

This finishes the proof that B ⊗ C is a basis of V ⊗W and that B × C → B ⊗ C,
(b, c) 7→ b⊗ c is a bijection. �

2.8.10. Example. We have Fm ⊗ Fn ∼= Fmn. In fact, if we think of Fmn as m× n
matrices then this isomorphism can be made very explicit: It maps ei ⊗ e′j to Eij ,
where e1, . . . , em and e′1, . . . , e

′
n are the canonical bases of Fn and Fn respectively

and Eij the canonical basis of Mm×n(F).

2.8.11. Exercise. Show that the tensor product is additive in each variable, i.e.

(V1 ⊕ V2)⊗W ∼= (V1 ⊗W )⊕ (V2 ⊗W )

and similarly on the other side, and prove that the tensor is symmetric, i.e.

V ⊗W ∼= W ⊗ V
for all vector spaces V, V1, V2,W .

2.8.12. Exercise. Let V and W be F-vector spaces. Show that we have a canonical
linear transformation

S = SV,W : V # ⊗W → Lin(V,W )

mapping simple tensors `⊗w (for ` ∈ V # = Lin(V,F) and w ∈W ) to T`,w : V →W
defined by T`,w(x) = `(x) · w, for all x ∈ V . (For instance, in the notation of

Exercise 2.4.29, show that Eij is S(b#j ⊗ b′i).) Show that SV,W is an isomorphism

for all W if and only if V is finite-dimensional. [Hint: Finite-rank transformations{
T : V →W

∣∣ dim(Im(T )) <∞
}

form a subspace of Lin(V,W ) containing Im(S).]





CHAPTER 3

Diagonalization

For the whole chapter, F is a fixed field. Without explicit mention, T : V → V
is a linear transformation from a finite-dimensional F-vector space V to itself.

3.1. Diagonalizable operators

3.1.1. Definition. Let V be an F-vector space. A linear transformation T : V → V
from V to itself is often called a (linear) operator on V .

3.1.2. Example. Any square matrix A ∈ Mn×n(F) defines a linear operator TA
on Fn = Mn×1(F), where as usual TA(x) = A · x is given by matrix multiplication.

Conversely, the choice of a basis B of a finite-dimensional F-vector space V
yields a square matrix

[T ]B := [T ]B,B

for every operator T : V → V . Note that we use the same basis B in the source
and target space(s) of T , hence the abbreviated notation [T ]B . The matrix [T ]B
depends on B and we discussed in Section 2.5 how to relate [T ]B and [T ]C for
different bases B and C of the same V . We have [T ]B = Q · [T ]C · Q−1 where
Q = QB,C = [IdV ]B,C and Q−1 = QC,B = [IdV ]C,B are invertible.

3.1.3. Remark. Operators T : V → V, x 7→ T (x) have the property that they
can be iterated, since the output T (x) belongs to the source space of T , meaning
that T (T (x)) makes sense, and so on. This is easy to motivate in applications: If
your mathematical model of a concrete problem is that T describes what happens
to the x ∈ V after 1 year (or 1 second) then we may want to know what happens
after 2 years, 3 years, etc (or 2 seconds, 3 seconds, etc). This amounts to re-apply
T to T (x), and again, and again, etc.

For every i ∈ N we let T i = T ◦ T ◦ · · · ◦ T be the operator V → V defined
by composing T with itself i times. In other words, for every x ∈ V , we have
T i(x) = T (T (· · ·T (T (x)) · · · )) where T appears i times. Note that for i = 0, this
means T 0 = IdV . (If we do not apply T at all, every x ∈ V stays where it is.) We
have for all i, j ∈ N the following equality of operators V → V

T i ◦ T j = T i+j .

More generally, if P = a0 + a1X + · · · + adX
d =

∑d
i=0 aiX

i ∈ F[X] is a
polynomial with coefficients in F then P (T ) : V → V is the operator obtained by
‘evaluating’ the polynomial P at T (i.e. replacing X by T , using T 0 = IdV )

P (T ) =

d∑
i=0

ai · T i = a0 · IdV +a1T + · · ·+ adT
d.

63
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In explicit terms, for every x ∈ V we have the following equality in V

(P (T ))(x) =

d∑
i=0

ai · T i(x) = a0 · x+ a1 · T (x) + · · ·+ ad · T d(x).

3.1.4. Example. Suppose that V = Fn and T = TA for A ∈ Mn×n(F). Then
P (T ) = TP (A) where P (A) is the polynomial P = a0 + a1X + · · ·+ adX

d evaluated

at the matrix A, that is, P (A) = a0 · In + a1 ·A+ · · ·+ ad ·Ad. Note that iterated
powers of matrices Ai = A · A · · ·A can be rather complicated, as each step is a
matrix multiplication (a sum of n products of n elements, for each of the n × n
entries, the whole thing repeated i− 1 times).

We can commute ‘take the matrix’ and ‘evaluate a polynomial’:

3.1.5. Proposition. Let T : V → V be an operator on V of finite dimension and
let B be a basis of V . Let P ∈ F[X] be a polynomial and consider P (T ) : V → V .
Then the matrix [P (T )]B = [P (T )]B,B of the operator P (T ) with respect to B is

[P (T )]B = P (A)

where A = [T ]B = [T ]B,B is the matrix of T with respect to B.

Proof. We have by Theorem 2.4.16 and induction on i ∈ N that [T i]B =

[T ◦ · · · ◦ T ]B,B = [T ]B,B · · · [T ]B,B = ([T ]B)i. Hence if P =
∑d
i=0 aiX

i we have

[P (T )]B = [
∑d
i=0 aiT

i]B by definition of P (T )

=
∑d
i=0 ai[T

i]B by linearity of [−]B,B : Lin(V, V )→ Mn×n(F)

=
∑d
i=0 aiA

i since we saw above that [T i]B = ([T ]B)i = Ai

= P (A) by definition of P (A).

This is the claim. �

Let us now turn attention to diagonal matrices. We recall the notation.

3.1.6. Definition. A square matrix A ∈ Mn×n(F) is called diagonal if Aij = 0 for
all 1 ≤ i, j ≤ n with i 6= j. We write diag(λ1, . . . , λn) for the diagonal matrix A
such that Aii = λi for all 1 ≤ i ≤ n:

diag(λ1, . . . , λn) =

 λ1 0 ··· 0
0 λ2 0

...
. . . 0

0 ··· 0 λn

 .

Polynomials are much easier to evaluate on diagonal matrices. In particular,
they remain diagonal.

3.1.7. Proposition. Let A = diag(λ1, λ2, . . . , λn) be a diagonal matrix. Then for
every i ∈ N we have Ai = diag(λi1, λ

i
2, . . . , λ

i
n). More generally, if P ∈ F[X] then

we have P (A) = diag(P (λ1), P (λ2), . . . , P (λn)).

Proof. Both claims are easy to verify from the formulas for matrix multipli-
cation. We have A0 = In = diag(1, . . . , 1) = diag(λ0

1, . . . , λ
0
n) and by induction

Ai+1 = A ·Ai =

 λ1 0 ··· 0
0 λ2 0

...
. . . 0

0 ··· 0 λn

 ·

λi1 0 ··· 0

0 λi2 0

...
. . . 0

0 ··· 0 λin

 =


λi+1
1 0 ··· 0

0 λi+1
2 0

...
. . . 0

0 ··· 0 λi+1
n


which is indeed diag(λi+1

1 , . . . , λi+1
n ). The result for P (A) follows linearly. �
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3.1.8. Remark. Let us emphasize how simpler it is to compute P (A) when A =
diag(λ1, . . . , λn) is diagonal, compared to the general case. (1)

3.1.9. Corollary. Suppose that B is a basis of V such that [T ]B = diag(λ1, . . . , λn)
is diagonal. Then [P (T )]B = diag(P (λ1), . . . , P (λn)) is diagonal as well.

Proof. Simply combine Propositions 3.1.5 and 3.1.7. �

3.1.10. Remark. If A,D ∈ Mn×n(F) are similar, A ∼ D, meaning that A =
Q·D·Q−1 for an invertible matrix Q, then P (A) ∼ P (D) and more precisely P (A) =
Q ·P (D) ·Q−1. Indeed, Ai = (QDQ−1)i = QDQ−1QDQ−1 · . . . ·QDQ−1QDQ−1 =

QDiQ−1 by induction on i. Thus if P =
∑d
i=0 aiX

i then P (A) =
∑d
i=0 aiA

i =∑d
i=0 aiQ · Di · Q−1 = Q · (

∑d
i=0 aiD

i · Q−1) = Q · (
∑d
i=0 aiD

i) · Q−1 = Q ·
P (D) · Q−1. In particular, if D = diag(λ1, . . . , λn) is diagonal then P (A) = Q ·
diag(P (λ1), . . . , P (λn)) ·Q−1 is very easy to compute.

In view of Corollary 3.1.9, it is interesting to know when the matrix of an
operator T : V → V can be diagonal, i.e. when such a basis B exists. Now note
that this heavily depends on B, as diagonal matrices do not commute with other
matrices in general. (Diagonal matrices of the form a · In = diag(a, a, . . . , a) do
commute with any Q. And indeed [a · IdV ]B = a · In for all B.) So it can happen
that [T ]B is diagonal for a nice basis B but that [T ]C is not diagonal for another.
We have [T ]C = Q · [T ]B ·Q−1 where Q = [Id]B,C but this product cannot be turned
around to cancelQ andQ−1 in general. Hence the notion of diagonalizable operator,
not of diagonal operator. This is the fundamental definition of the chapter.

3.1.11. Definition. Let T : V → V be a linear operator on a finite-dimensional
F-vector space V . We say that T is diagonalizable if there exists a basis B of V
such that the matrix [T ]B = [T ]B,B is diagonal.

A matrix A ∈ Mn×n(F) is called diagonalizable if TA : Fn → Fn is diagonal-
izable. By Corollary 2.5.8 this means that there exists an invertible matrix Q ∈
GLn(F) and a diagonal matrix D = diag(d1, . . . , dn) such that A = Q ·D ·Q−1. In
other words, A is similar to a diagonal matrix.

3.1.12. Example. Let T : R2 → R2 be the (orthogonal) symmetry of the plane with
respect to some fixed line L = Span([ ab ]) for [ ab ] 6= 0. Then T is diagonalizable.
Indeed, let B = {v1, v2} be the basis of R2 consisting of v1 = [ ab ] and v2 = [−ba ] for
instance. The vectors v1, v2 are chosen so that v1 ∈ L and v2 is orthogonal to v1

(and non-zero). Indeed, the scalar product 〈v1, v2〉 = 〈[ ab ] , [−ba ]〉 = a·(−b)+b·a = 0.
Now we have T (v1) = v1 since v1 ∈ L and T (v2) = −v2 since v2 is orthogonal to L.
Hence [T ]B =

(
1 0
0 −1

)
is diagonal.

We can also compute the matrix [T ]C in the canonical basis C = {e1, e2}
although computing T (e1) and T (e2) form the geometric definition of T is a little
tricky. For this, note that Q := QC,B =

(
a −b
b a

)
and therefore Q−1 = 1

a2+b2

(
a b
−b a

)
.

See Example D.2.19. Then

[T ]C = Q · [T ]B ·Q−1 =
1

a2+b2

(
a −b
b a

) (
1 0
0 −1

) (
a b
−b a

)
=

1

a2+b2

(
a2−b2 2ab

2ab −a2+b2

)
.

1 Morally, for every reasonable function f for which f(A) makes sense for matrices A, one can
claim that f(diag(λ1, . . . , λn)) = diag(f(λ1), . . . , f(λn)). Indeed, if we have a topology, say for

F = R for instance, and if f(X) = a0 +a1X+a2X2 + · · · admits a Taylor expansion as an infinite
series, then this claim is ‘just’ the limit over deg(P )→∞ of Proposition 3.1.7. For instance, we can

define exp(A) using f(X) =
∑∞
i=0

1
i!
Xi. In that case, exp(diag(λ1, . . . , λn)) = diag(eλ1 , . . . , eλn ).
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3.1.13. Exercise. Let a, b ∈ R not both zero and let A = 1
a2+b2

(
a2−b2 2ab

2ab −a2+b2

)
.

Compute A2 directly. Then compare to the above example.

3.2. Eigenvalues and characteristic polynomial

For this section, V is a finite-dimensional F-vector space and T : V → V is a
linear operator. In the previous section, we motivated the search for a basis B of V
such that A = [T ]B would be diagonal, say

A = diag(λ1, . . . , λn) =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 .

Let us unpack the meaning of this equation, with the basis vectors explicitly named

(3.2.1) [T ]B = diag(λ1, . . . , λn) where B = {b1, . . . , bn}.
By the definition of [T ]B = [T ]B,B this exactly means that for each j = 1, . . . , n
the coordinates of T (bj) in the basis B is the j-th column of diag(λ1, . . . , λn), that
is λj · ej . By definition of the coordinates of a vector in the basis B = {b1, . . . , bn},
this relation [T (bj)]B = λj · ej means that T (bj) = 0 · b1 + ·+ 0 · bj−1 + λj · bj + 0 ·
bj+1 + · · ·+ 0 · bn = λj · bj . So we have proved:

3.2.2. Proposition. An operator T : V → V and a basis B = {b1, . . . , bn} satisfy
[T ]B = diag(λ1, . . . , λn) if and only if T (bj) = λj · bj for all j = 1, . . . , n. �

3.2.3. Remark. In other words, the vectors bj of the basis B are remarkable (with
respect to T ) in that their image under the operator is a multiple of themselves:
T (bj) ∈ Span(bj). Note that there is an unremarkable vector v such that T (v) ∈
Span(v) for all T and that is v = 0. But our basis vector bj cannot be zero.

Let us rephrase the above. What is remarkable about T being diagonalizable
is that we can build a basis of V with (non-zero) vectors bj that each satisfy
T (bj) = λj · bj for some λj ∈ F.

It is actually easier to isolate which λj can appear in this way and then to look
for the bj after the fact. Let us formalize this.

3.2.4. Definition. Let T : V → V be an operator on a finite-dimensional F-vector
space V . Let λ ∈ F be a scalar. We say that λ is an eigenvalue of T if there exists
a non-zero vector v ∈ V such that T (v) = λ · v.

For a matrix A ∈ Mn×n(F), we say that λ is an eigenvalue of A if it is an
eigenvalue of TA, that is, if there exists a non-zero x ∈ Fn such that A · x = λx.

3.2.5. Remark. Again, appreciate how these definitions would be silly if we did
not insist on v (or x) being non-zero. Indeed T (0) = λ · 0 for all λ ∈ F.

3.2.6. Proposition. Let T : V → V be a linear operator on a finite-dimensional
F-vector space V and let λ ∈ F be a scalar. The following are equivalent:

(i) The scalar λ is an eigenvalue of T
(ii) The operator (T − λ · IdV ) : V → V has a non-zero kernel.

(iii) The operator (T − λ · IdV ) : V → V is not invertible.
(iv) For every basis C of V , the scalar λ is an eigenvalue of the matrix A = [T ]C .
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(v) There exists a basis C of V such that λ is an eigenvalue of [T ]C .
(vi) For every basis C of V , we have det(A− λ · In) = 0, where A = [T ]C .

(vii) There exists a basis C of V such that det(A− λ · In) = 0, where A = [T ]C .

Proof. Note that (T−λ·IdV )(v) = T (v)−λ·v. So the equivalence of (i) and (ii)
is direct from Definition 3.2.4. And (ii) is equivalent to (iii) since dim(V ) = dim(V )
(duh!) and we can use Corollary 2.3.14 with V ′ = V . To show that (iii)⇔(vi)⇔(vii)
note that if A = [T ]C then [T − λ · IdV ]C = [T ]C − λ · [IdV ]C = A − λ · In. So
we can use Corollary 2.4.26 which says that T − λ IdV is an isomorphism if and
only if its matrix is invertible in some (or in every) basis. Of course, we express
invertibility by saying that the determinant is non-zero (Theorem D.2.15). Finally,
to pass to (iv) and (v), we note as above that the square matrix A− λ · In is non-
invertible is the same thing as saying that it is not injective, i.e. is the same thing
as saying that Ker(A− λ · In) is non-zero. This is equivalent to the very definition
of λ being an eigenvalue of A since x ∈ Ker(A− λ · In) is just saying A · x = λ · x.
So we have (iv)⇔(vi) and (v)⇔(vii). �

3.2.7. Remark. Here is a mostly cosmetic remark but honesty requires us to
make it. The definition of the determinant det(A) of a square matrix A (e.g. as in
Definition D.2.3) does not use that the matrix has entries in a field. We just need
what is called a commutative ring: We need to be able to add and multiply and
have associativity and distributivity, as for instance in axioms (F 1)-(F 8) – without
asking for (F 9) and (F 10). In particular, we can compute det(A) for a matrix
whose entries are in the commutative ring of polynomials F[X] in one variable X.
We know how to add polynomials (the addition of the F-vector space F[X]) but we
also know how to multiply them by using distributivity and commutativity and the
rule Xi · Xj = Xi+j . Note that F[X] is not a field though since for instance the
polynomial X has no inverse. In any case, the following definition makes sense.

3.2.8. Definition. Let A ∈ Mn×n(F) be a square matrix. Its characteristic poly-
nomial PA ∈ F[X] is defined as

PA(X) = det(A−X · In) = det


A11−X A12 · · · A1n

A21 A22−X
. . .

...
...

. . .
. . . An−1,n

An1 · · · An,n−1 An,n−X

 .

3.2.9. Lemma. The characteristic polynomial PA(X) is a polynomial of degree n
in the variable X, with leading term (−1)n and constant term det(A), that is,

PA(X) = (−1)nXn + an−1X
n−1 + · · ·+ a1X + det(A).

We can also check that an−1 = (−1)n−1 tr(A).

Proof. The constant term is obvious: PA(0) = det(A− 0 · In) = det(A). Let
us determine the coefficients of Xd in PA(X) for d ≥ n−1. With the basic definition
(Definition D.2.3) it is an unpleasant exercise by induction on n. With the ‘better’
definition of the determinant using permutations (Theorem D.2.34), we get

det(A−X · In) =
∑
σ∈Sn sgn(σ)

∏n
i=1(A−X · In)i,σ(i)

=
∏n
i=1(Ai,i −X) +

∑
σ∈Sn
σ 6=id

sgn(σ)
∏n
i=1(A−X · In)i,σ(i)
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by separating the term σ = id from the rest. Expanding the first term it reads

(3.2.10) (A11 −X) · · · (Ann −X) = (−X)n + (A11 + · · ·+Ann)(−X)n−1 +Q(X)

where Q(X) is a polynomial of degree at most n− 2 in X. Similarly, all products∏n
i=1(A−X · In)i,σ(i) for σ 6= id in the rest of the above sum

(3.2.11)
∑
σ∈Sn
σ 6=id

sgn(σ)

n∏
i=1

(A−X · In)i,σ(i)

are polynomials of degree at most n− 2 in X. Indeed each factor (A−X · In)ij is
either the constant Aij for i 6= j (for (In)i,j = 0 in that case) or is the degree one

polynomial (Aii − X) for i = j. Now if σ 6= id then σ : {1, . . . , n} ∼→ {1, . . . , n}
moves at least two indices, say j, k. Then (A−X · In)i,σ(i) = Ai,σ(i) is a constant

polynomial when i ∈ {j, k}. So the product
∏n
i=1(A − X · In)i,σ(i) is a product

of n polynomials of degree at most one in X, at least two of which are actually
constant. Hence this product is a polynomial of degree at most n − 2 in X. So
the coefficients of degree n and n − 1 (and higher) will not be changed when we
add (3.2.11) to (3.2.10). This gives the announced result. �

3.2.12. Proposition. Let T : V → V be an operator on a finite-dimensional F-
vector space. Let A = [T ]C be its matrix with respect to some basis C of V . Then
the characteristic polynomial PA is independent of the choice of said basis C. We
call it the characteristic polynomial of T :

PT = det([T ]C −X · In) for any basis C of V .

Proof. Let C ′ be another basis of V and A′ = [T ]C′ . We need to show that
A and A′ have the same characteristic polynomial. We know that A′ = Q−1AQ
where Q = [Id]C,C′ . But then A′−X · In = Q−1AQ−X · In · (Q−1Q) = Q−1AQ−
Q−1X ·InQ = Q−1(AQ−X ·InQ) = Q−1(A−X ·In)Q, where the second equality
used that the matrix X ·In = diag(X,X, . . . ,X) commutes with Q. And then those
similar matrices have the same determinant (Corollary D.2.18):

PA′ = det(A′ −X · In) = det(A−X · In) = PA

as was to be shown. �

3.2.13. Corollary. Let λ ∈ F and T : V → V . Then λ is an eigenvalue of T if
and only if PT (λ) = 0, that is, λ is a root of the characteristic polynomial of T .

Proof. Choose a basis C of V and let A = [T ]C . We have seen in Proposi-
tion 3.2.6 that λ is an eigenvalue of T if and only if PA(λ) = det(A−λIn) vanishes.
This means that λ is a root of PA = PT . �

At this stage, the reader uncomfortable with polynomials, roots, etc, should
revise these prerequisites. (See Appendix D.1.)

3.2.14. Corollary. An operator T : V → V has at most dim(V ) distinct eigenval-
ues.

Proof. We saw that the characteristic polynomial (that is, the characteristic
polynomial of the matrix of T with respect to any basis of V ) has degree dim(V ).
A polynomial of degree d has at most d distinct roots. (See Proposition D.1.3.) �
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3.2.15. Example. Let T = TA : R2 → R2 be given by A = 1
a2+b2

(
a2−b2 2ab

2ab −a2+b2

)
.

as in Example 3.1.12. Then PA(X) = det(A−X · I2) is

(
1

a2 + b2
)2 det(

(
a2 − b2 −X(a2 + b2) 2ab

2ab −a2 + b2 −X(a2 + b2)

)
)

but can also be computed as PA(X) = X2 − tr(A) · X + det(A) = X2 − 1 since
det(A) = ( 1

a2+b2 )2(−a4 + 2a2b2− b4− 4a2b2) = −1 Hence PA(X) = (X − 1)(X + 1)

and A (and TA) has two eigenvalues: 1 and −1 (in R). This is fitting for a symmetry.
After all, T was constructed in such a way that T (v1) = v1 and T (v2) = −v2 in
the notation of Example 3.1.12. So we already knew that 1 and −1 are eigenvalues
and since dim(V ) = 2 they are the only two.

3.2.16. Example. Let A =
(

0 −1
1 0

)
the matrix of the rotation of the plane by

angle π
2 around the origin, in the canonical basis. We see by a direct geometric

reasoning that A cannot have eigenvalues as there is no non-zero vector v ∈ R2 such
that A · v ∈ Span(v) since A · v makes a right angle with v. We can also check this
algebraically. We have PA(X) = det

(−X 1
−1 −X

)
= X2 + 1 and this polynomial has

no real root.

3.2.17. Corollary. Let T : V → V be a diagonalizable operator. Then PT splits
completely: PT (X) = (−1)n(X − λ1) · · · (X − λn) for λ1, . . . , λn ∈ F.

Proof. The characteristic polynomial PT (X) can be computed as PA(X) for
the matrix A = [T ]B of T in any basis. Since T is diagonalizable, let us choose B
so that [T ]B = diag(λ1, . . . , λn). The result follows. �

3.2.18. Remark. Beware that the complete decomposition of the polynomial PT
over F is necessary but not sufficient for T to be diagonalizable. Consider A = ( 0 1

0 0 )
and T = TA : F2 → F2. Then PT (X) = PA(X) = X2 and 0 is the only eigenvalue.
However, A 6= 0 so it cannot be similar to diag(0, 0) = 0. Therefore T is not
diagonalizable even though PT (X) is completely split.

3.3. Eigenvectors and eigenspaces

As before, V is a finite-dimensional F-vector space and T : V → V is a linear
operator. We saw in the previous section what eigenvalues were and how to find
them. But we should remember Proposition 3.2.2: To show that T is diagonalizable
we need a whole basis B of V consisting of vectors b such that T (b) = λ · b for an
eigenvalue λ. Let us give those a name.

3.3.1. Definition. Let λ ∈ F be an eigenvalue of T : V → V . Recall that it means
that there exists a non-zero v ∈ V such that T (v) = λv. The entire subspace on
which T acts via λ is called the eigenspace of T for the eigenvalue λ:

Eλ(T ) =
{
v ∈ V

∣∣T (v) = λ · v
}

= Ker(T − λ · IdV ).

Vectors in Eλ(T ) (or sometimes only non-zero vectors in there) are called eigenvec-
tors of T for the eigenvalue λ. These are the (non-zero) v ∈ V such that T (v) = λv.
For λ to be an eigenvalue means that T admits a non-zero eigenvector for the eigen-
value λ. (2)

2 For readers preoccupied by exams, grades, etc, you will not be penalized for saying that
0 is an eigenvector. However you will lose 100% of the points of any given problem if you even
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3.3.2. Remark. Note that Eλ(T ) is a subspace! So it has a dimension, it has
bases, etc.

3.3.3. Example. Let us continue Example 3.2.15 with T = TA : R2 → R2 the

symmetry with A = 1
a2+b2

(
a2−b2 2ab

2ab −a2+b2

)
. We found two eigenvalues 1 and −1.

We can compute E1(A) = Ker(A− I2). Since a2 + b2 6= 0, this amounts to

Ker(
(
a2−b2−(a2+b2) 2ab

2ab −a2+b2−(a2+b2)

)
) = Ker(

(
−2b2 2ab
2ab −2a2

)
) = Span([ ab ]).

Of course, we guess E1(T ) from the geometry but we can really solve the above by

Gauss-Jordan. Indeed, if b 6= 0, the matrix A− I2 can be row-reduced to
(

1 − ab
0 0

)
,

whose kernel is Span(
[ a
b
1

]
) = Span([ ab ]) since b 6= 0. And if b = 0, the matrix

A − I2 can be row-reduced to ( 0 1
0 0 ), whose kernel is Span([ 1

0 ]) = Span([ ab ]) since
a 6= 0 = b in this case. In both cases we recover Span([ ab ]) which was the line L of
Example 3.1.12. A direct verification shows that E−1(T ) = Span([−ba ]) = L⊥.

3.3.4. Remark. If we resume our quest of a basis B of V in which [T ]B is diagonal,
we can construct bases of each eigenspace Eλ(T ) and then try to create the basis B
of V . The good news is that there is no risk of ‘collision’ between those separate
bases.

3.3.5. Lemma. Let λ1, . . . , λr be r ≥ 1 distinct eigenvalues of an operator T : V →
V . Suppose that x1 ∈ Eλ1(T ),. . .xr ∈ Eλr (T ) are respective eigenvectors such that

(3.3.6) x1 + · · ·+ xr = 0.

Then they are all trivial x1 = . . . = xr = 0.

Proof. Let us prove this by induction on r ≥ 1. The case r = 1 is a reading
exercise. Suppose r ≥ 2 and the lemma known for r − 1. Applying T to (3.3.6),
using linearity of T and the fact that T (xi) = λi · xi we have

λ1 · x1 + λ2 · x2 + · · ·+ λr · xr = 0.

But we can subtract λ1 times (3.3.6) to the latter and get

(λ2 − λ1) · x2 + · · ·+ (λr − λ1) · xr = 0

since the first term disappeared: λ1x1 − λ1x1 = 0. Now this is a zero sum of r − 1
eigenvectors (λi − λ1) · xi ∈ Eλi(T ) – recall that eigenspaces are subspaces, hence
closed by multiplication by scalars. By induction hypothesis, if r − 1 eigenvectors
for distinct eigenvalues (here λ2, . . . , λr) add up to zero, they are all zero. So

(λi − λ1) · xi = 0

for all i = 2, . . . , r. Now λ1 6= λi for i ≥ 2 (since the λi are all distinct). Therefore
the last relation forces xi = 0 for all i = 2, . . . , r. Finally x1 = 0 by (3.3.6) and the
already proved x2 = . . . = xr = 0. �

3.3.7. Proposition. Let λ1, . . . , λr be r ≥ 1 distinct eigenvalues of an operator
T : V → V . Let Bi be a basis of Eλi(T ) for each i = 1 . . . , r. Then these are all
disjoint (Bi ∩Bj = ∅ for all i 6= j) and B1 ∪ · · · ∪Br is linearly independent.

remotely imply that an eigenvalue is a scalar λ ∈ F such that there exists v ∈ V with T (v) = λv.
It is crucial that such a v exists that is also non-zero! Once we know that this happens, the
eigenspace Eλ(T ) should be a subspace; so it contains zero; nothing to write home about.
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Proof. The fact that Bi∩Bj = ∅ for all i 6= j is immediate from Lemma 3.3.5
with r = 2. An x in the intersection would give x + (−x) = 0. Let us show
linear independence. Suppose that we have a trivial linear combination of vectors
in the union B1 ∪ · · · ∪ Br. Regrouping those vectors by eigenspace, we have
distinct vectors x1,1, . . . , xs1,1 ∈ B1 ⊂ Eλ1

(T ), . . . , x1,r, . . . , xsr,r ∈ Br ⊂ Eλr (T )
and scalars a1,1, . . . , as1,1, . . . , a1,r, . . . , asr,r ∈ F such that

r∑
j=1

sj∑
i=1

ai,j · xi,j = 0.

This reads y1 + · · ·+ yr = 0 where yj =
∑sj
i=1 ai,j · xi,j for each j = 1, . . . , r. Note

that yj belongs to Eλj (T ) since all xi,j do. By Lemma 3.3.5 this forces yj = 0

for all j. But this reads
∑sj
i=1 ai,j · xi,j = 0 and the x1,j , . . . , xsj ,j are linearly

independent (they belong to the basis Bj of Eλj (T )). We conclude that ai,j = 0 for
all i = 1, . . . , sj , and this is true for all j = 1, . . . , r. Hence the linear independence
of B1 ∪ · · · ∪Br. �

This gives us the criterion for diagonalization: T is diagonalizable if and only
if the sum of the dimensions of its eigenspaces equals the dimension of V .

3.3.8. Theorem. Let T : V → V be a linear operator on a finite-dimensional F-
vector space. Then the following are equivalent:

(i) T is diagonalizable.
(ii) Let λ1, . . . , λr ∈ F be a complete list of all the r distinct eigenvalues of T in F.

Then
∑r
i=1 dim(Eλi(T )) = dim(V ).

(iii) There exists r distinct eigenvalues of T in F such that
∑r
i=1 dim(Eλi(T )) =

dim(V ).

Proof. Let n = dim(V ). Suppose (i), i.e. T is diagonalizable. Then there
exists a basis B such that [T ]B is diagonal. Up to re-ordering B, we can assume
that all eigenvectors for the same eigenvalue come ‘together’, that is,

[T ]B = diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr, . . . , λr)

where λ1, . . . , λr are the distinct eigenvalues (λi 6= λj for all i 6= j). Say we have
m1 ≥ 1 times λ1, then m2 times λ2, . . . , up to mr times λr. The characteris-
tic polynomial of T can be computed with the diagonal matrix [T ]B which gives
PT (X) = (−1)n(X − λ1)m1 · · · (X − λr)

mr . Then the matrix of T − λi · IdV in
the basis B has exactly mi times a zero entry on the diagonal (the λi − λi of
the ‘i-th group’) and all other entries (λj − λi) non-zero. The rank of this di-
agonal matrix is n − mi, hence its kernel has dimension mi. In other words, for
each i = 1, . . . , r the dimension of Eλi(T ) = Ker(T − λi IdV ) is mi. But then∑r
i=1 dim(Eλi(T )) =

∑r
i=1mi = deg(PT (X)) = n. This gives (ii).

The implication (ii)⇒(iii) is trivial.
The implication (iii)⇒(i) is the interesting direction but we have done all the

preparation to make it short. Suppose that λ1, . . . , λr are r distinct eigenvalues and∑r
i=1 dim(Eλi(T )) = dim(V ). Pick a finite basis Bi of Eλi(T ) for each i = 1, . . . , r

(after all, each Eλi(T ) is a subspace of a finite-dimensional F-vector space, hence
has finite dimension). Form the union B = B1∪ · · ·∪Br. By Proposition 3.3.7, the
Bi are all disjoints, so B has |B1|+ · · ·+ |Br| elements. By hypothesis this adds up
to dim(V ). By the same Proposition 3.3.7 we know that B is linearly independent.
As it has the right number of vectors, Corollary 1.6.31 tells us that B is a basis.
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We have therefore constructed a basis of V consisting of eigenvectors (each Bi is
in Eλi(T )) and we conclude by Proposition 3.2.2. �

We can rephrase Theorem 3.3.8 in terms of so-called multiplicities.

3.3.9. Definition. Let T : V → V be an operator and λ ∈ F be an eigenvalue.

(1) The algebraic multiplicity multT (λ) is the multiplicity m of λ as a root of the
characteristic polynomial of T , that is, PT (X) = (X−λ)m ·Q(X) and Q(λ) 6= 0.

(2) The geometric multiplicity of λ is simply dim(Eλ(T )).

The geometric multiplicity is always bounded by the algebraic multiplicity:

3.3.10. Proposition. Let λ ∈ F be an eigenvalue of T : V → V . Then we have

1 ≤ dim(Eλ(T )) ≤ multT (λ).

Proof. Choose C = {c1, . . . , cd} a basis of Eλ(T ) where d = dim(Eλ(T )) is
the geometric multiplicity of λ. Complete C into a basis B of V . (Corollary 1.6.32.)
In the basis B, the matrix of T has the following form, directly from the definition

[T ]B =
(

[T ]C A′

0 A′′

)
=

λ 0

. . .
0 λ

 A′

0 A′′


where the second equality uses [T ]C = diag(λ, . . . , λ) ∈ Md×d(F) since every c ∈ C
belongs to Eλ(T ), i.e. satisfies T (c) = λ · c. We can compute PT (X) with the
latter matrix and expanding det([T ]B −X · In) along the first columns, we see that
PT (X) = (λ − X)d · PA′′(X). In particular, the multiplicity of λ in PT (X) is at
least d, as was to be shown. �

3.3.11. Example. In the already encountered exampleA = ( 0 1
0 0 ) we have PA(X) =

X2 and λ = 0 is the only eigenvalue. Its algebraic multiplicity is 2 but its geometric
multiplicity is the dimension of E0(A) = Ker(A) = Span([ 1

0 ]) which is 1.

In fact, Proposition 3.3.10 is sharp in that we can produce examples of operators
with arbitrary geometric and algebraic multiplicities, as long as they satisfy the
conclusion of Proposition 3.3.10.

3.3.12. Exercise. Let 1 ≤ d ≤ m be integers. Let λ ∈ F. Define a matrix J =
J(λ;m, d) in Mm×m(F) that has only (possibly) non-zero entries on the diagonal
and just above the diagonal, as follows, for all 1 ≤ i, j ≤ m:

Jij =

 λ if j = i
1 if j = i+ 1 and 1 ≤ i ≤ m− d
0 otherwise.

For instance J(λ; 3, 1) =
(
λ 1 0
0 λ 1
0 0 λ

)
, J(λ; 3, 2) =

(
λ 1 0
0 λ 0
0 0 λ

)
and J(λ; 3, 3) =

(
λ 0 0
0 λ 0
0 0 λ

)
.

Write down the matrices J(λ; 4, d) for d = 1, 2, 3, 4. Compute the geometric and
algebraic multiplicities of λ for T = TJ in a general J = J(λ;m, d).

3.3.13. Exercise. Find a block-diagonal matrix A =

 J1 0 0
0 J2 0

. . .
0 Jr

 for Ji ∈

Mmi×mi(F) as in Exercise 3.3.12 to produce a matrix A with any choice of r
distinct eigenvalues λ1, . . . , λr of prescribed multiplicities di = dim(Eλi(A)) and
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multA(λi) = mi for all i = 1, . . . , r, where the r distinct scalars λ1, . . . , λr and the
numbers 1 ≤ di ≤ mi are chosen by the opponent.

3.3.14. Exercise. Same problem as in Exercise 3.3.13 but where A ∈ Mn×n(F)
could have n > m1 + · · ·+mr, that is, where the characteristic polynomial PA(X)
is not split. (Here F is a non-algebraically closed field, say F = R for instance.)

We can now rephrase Theorem 3.3.8 in terms of multiplicities.

3.3.15. Corollary. Let T : V → V be a linear operator on an F-vector space V of
dimension n. The following are equivalent:

(i) The operator T is diagonalizable.
(ii) The characteristic polynomial of T is completely split in F[X], i.e. we have

PT (X) = (−1)n(X − λ1)m1 · · · (X − λr)mr for r distinct λ1, . . . , λr ∈ F and
for m1, . . . ,mr ≥ 1, and every eigenvalue of T has maximal geometric multi-
plicity, i.e. we have dim(Eλi(T )) = mi for all i = 1, . . . , r.

Proof. The proof of (i)⇒(ii) is an easy exercise about diagonal matrices.
Let us see why (ii) suffices to know that T is diagonalizable. This is easy from
Theorem 3.3.8. Indeed, we need to check that

∑r
i=1 dim(Eλi(T )) = dim(V ) = n.

Recall that n = deg(PT (X)) = m1 + . . .+mr since PT is split. So the assumption
dim(Eλi(T )) = mi for all i = 1 . . . , r gives us the result. �

3.3.16. Remark. In the previous statement, it is important to assume PT (X)
completely split, for the equality between multiplicities dim(Eλ(T )) = multT (λ)

for all eigenvalues is not enough. For instance A =
(
λ 0 0
0 0 1
0 −1 0

)
has characteristic

polynomial PA(X) = −(X − λ)(X2 + 1). So TA : R3 → R3 has only λ as eigenvalue
in F = R and dim(Eλ(TA)) = mT (λ) = 1 but 1 6= 3.

3.3.17. Corollary. Let T : V → V be a linear operator on a finite-dimensional
F-vector space V . Suppose that the field F is algebraically closed. Then T is
diagonalizable if and only if dim(Eλ(T )) = mT (λ) for all eigenvalues λ of T .

Proof. Indeed PT (X) is completely split, as all polynomials over F are. �

3.3.18. Corollary. Let T : V → V be a linear operator on an F-vector space V of
dimension n. Suppose that T has n distinct eigenvalues. Then T is diagonalizable.

Proof. The n distinct eigenvalues are n distinct roots of the characteristic
polynomial PT , which has degree n. This forces PT to be completely split and each
eigenvalue to have algebraic multiplicity 1, hence geometric multiplicity 1 as well
by Proposition 3.3.10. The sum of the geometric multiplicities is then

∑n
i=1 1 = n

and we conclude by Corollary 3.3.15. �

3.4. Cayley-Hamilton Theorem*

We want to prove a very simple result: If T : V → V is a linear operator on
a finite-dimensional F-vector space V then PT (T ) = 0. Recall that PT (X) is the
characteristic polynomial of T (Section 3.2). The expression PT (T ) is an operator
on V (as explained in Remark 3.1.3) and we want to show it is the zero operator,
meaning that (PT (T ))(v) = 0 for every v ∈ V . To this end, it is convenient to do
a little preparation.
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3.4.1. Definition. Let T : V → V be an operator and W ⊆ V be a subspace. We
say that W is T -invariant if T (W ) ⊆W , that is, if T (w) ∈W for every w ∈W .

3.4.2. Remark. Beware not to confuse this property with W being T -fixed, which
would be T (w) = w for every w ∈ W . The operator T still ‘moves’ a T -invariant
subspace W , but lands inside of W . In particular, we can restrict T to an operator

T|W : W // W

w
� // T (w).

This operator T|W : W →W is called the restriction of T to the subspace W .

3.4.3. Example. Of course, {0} and V itself are always invariant subspaces.
There is also a way to ‘generate’ an invariant subspace. Pick v ∈ V and con-
sider {v, T (v), T 2(v), . . .} =

{
T i(v)

∣∣ i ∈ N
}
⊆ V . This subset is T -invariant but it

is not a subspace. Then W = Span(
{
T i(v)

∣∣ i ∈ N
}

) is a T -invariant subspace. It
is the smallest T -invariant subspace of V that contains the vector v.

3.4.4. Exercise. Let G ⊆ V be a subset and T : V → V be an operator. Describe
the smallest T -invariant subspace of V that contains G.

3.4.5. Example. Let V = F[X] be the vector space of polynomials (which is not
finite dimensional, of course). Let T : V → V be the derivative of polynomials.
Let d ∈ N and W =

{
P ∈ V

∣∣ deg(P ) ≤ d
}

. Then W is T -invariant. This W is
however not S-invariant if S : V → V is defined by S(P ) = X · P .

We can relate the characteristic polynomial of T and the characteristic poly-
nomial of the restriction T|W to a T -invariant subspace W as follows.

3.4.6. Proposition. Let V be a finite-dimensional F-vector space and T : V → V
be an operator. Let W ⊆ V be a T -invariant subspace and T|W : W → W the
restriction. Then the characteristic polynomial of T|W divides the characteristic
polynomial of T .

Proof. Let n = dim(V ) and d = dim(W ) ≤ n. Set e := n− d. Choose a basis
C of W and complete it into a basis B of V . (We order B by putting the vectors
of C first.) In the ordered basis B, the matrix of T has the following form

[T ]B =
(
A′ A′′

0 A′′′

)
that is, it is upper-triangular by blocks, where A′ ∈ Md×d(F), and A′′ ∈ Me×d(F)
and A′′′ ∈ Me×e(F). Indeed, when we compute the j-th column of [T ]B = [T ]B,B
for j ≤ d then we consider bj ∈ B with j ≤ d which is in C hence in W . Thus
by T -invariance of W , we have T (bj) ∈ W = Span(b1, . . . , bd). So the coordinates
of T (bj) in the basis B = {b1, . . . , bd, bd+1, . . . , bn} are all zero beyond the d-th one.
Note in particular that A′ = [T|W ]C is the matrix of T|W : W → W with respect

to the basis C of W . Subtracting X · In =
(
X·Id 0

0 X·Ie

)
to the above matrix and

computing the determinant, we get

PT (X) = det([T ]B −X · In) = det(
(
A′−X·Id A′′

0 A′′′−X·Ie

)
)

= det(A′ −X · Id) · det(A′′′ −X · Ie) = PA′(X) · PA′′′(X).

See Exercise D.2.8. Since A′ = [T|W ]C , the characteristic polynomial PA′ of T|W
divides that of T as was to be shown. �
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Let us describe the characteristic polynomial of T|W that appears above, in the
case where W is spanned by a single vector, as in Example 3.4.3.

3.4.7. Lemma. Let T : V → V be an operator on a finite-dimensional V . Let
v ∈ V be non-zero and let W = Span(v, T (v), . . . , T i(v), . . .) be the T -invariant
subspace generated by v. Let d = dim(W ) ≤ dim(V ). Then we have:

(1) The vectors v, T (v), . . . , T d−1(v) form a basis of W .
(2) If a0, . . . , ad−1 ∈ F are the coordinates of T d(v) in the basis v, T (v), . . . , T d−1(v)

of (1), then the characteristic polynomial of the operator T|W : W → W is

(−1)d · (Xd − ad−1X
d−1 − · · · − a1X − a0).

Proof. Since V is finite dimensional, we cannot have infinitely many linearly
independent vectors in the list v, T (v), . . . , T i(v), . . .. So there is a largest inte-
ger k ≥ 0 such that the first k vectors v, T (v), . . . , T k(v) are linearly independent.
Then T k+1(v) ∈ Span(v, T (v), . . . , T k(v)) otherwise v, T (v), . . . , T k+1(v) would be
linearly independent (Lemma 1.6.12) contradicting the maximality of k. Then by in-
duction on i ≥ 1 it is easy to see that T k+i(v) ∈ Span(v, T (v), . . . , T k(v)). It follows
that Span(v, T (v), . . . , T k(v)) = W and since the k + 1 vectors v, T (v), . . . , T k(v)
are linearly independent, they form a basis of W . Hence k = d−1 as claimed in (1).

For (2), the assumption means T d(v) = a0 · v + a1T
1(v) + · · · + ad−1T

d−1(v).
Write the matrix of T in the basis B = {v, . . . , T d−1(v)}. It is

[T ]B =



0 0 · · · 0 0 a0

1 0 · · · 0 0 a1

0 1
. . . 0 0 a2

...
. . .

. . .
...

0 0 1 0 ad−2

0 0 · · · 0 1 ad−1


Md×d(F).

The characteristic polynomial of this matrix is the determinant of

[T ]B −X · In =



−X 0 · · · 0 0 a0

1 −X · · · 0 0 a1

0 1
. . . 0 0 a2

...
. . .

. . .
...

0 0 1 −X ad−2

0 0 · · · 0 1 ad−1 −X


.

Expanding it along the last column (the d-th one) and using that the determinant
of a triangular matrix is the product of the diagonal elements, we get

PT (X) =

d−1∑
i=1

(−1)i+dai−1(−X)i−1 + (ad−1 −X) · (−X)d−1

= (−1)d(Xd − ad−1X
d−1 − · · · − a1X − a0)

as claimed. �

We are ready to prove our goal in this section:
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3.4.8. Theorem (Cayley-Hamilton). Let T : V → V be a linear operator on a
finite-dimensional F-vector space V . Let PT (X) ∈ F[X] be the characteristic poly-
nomial of T . Then PT (T ) = 0 in Lin(V, V ).

Proof. Let v ∈ V . We need to prove that (PT (T ))(v) = 0. If v = 0, that
is clear. So we can assume that v 6= 0. Consider W = Span(v, T (v), . . .) the T -
invariant subspace of V generated by v as in Lemma 3.4.7. Adopt the notation of
that lemma, so d = dim(W ) and T d(v) = a0 · v+ a1 · T (v) + · · ·+ ad−1T

d−1(v). To
lighten the notation, let S = T|W : W → W the operator T restricted to W . We

have seen in Lemma 3.4.7 that PS(X) = (−1)d(Xd − ad−1X
d−1 − · · · − a1X − a0).

Note right away that PS(T ) : W →W vanishes on v by construction:

(PS(T ))(v) = (−1)d
(
T d(v)− ad−1T

d−1(v)− · · · − a1T (v)− a0v
)

= 0

since T d(v) = a0v + a1T (V ) + · · · + ad−1T
d−1(v). On the other hand, we saw in

Proposition 3.4.6 that PT (X) = Q(X) · PS(X) for some polynomial Q ∈ F[X].
Then we use that (Q · P )(T ) = Q(T ) ◦ P (T ) in Lin(V, V ) to compute in V

(PT (T ))(v) = (Q(T ) ◦ PS(T ))(v) = (Q(T ))
(
(PS(T ))(v)

)
= (Q(T ))(0) = 0

using the already established (PS(T ))(v) = 0. �

3.4.9. Corollary. Let A ∈ Mn×n(F) and PA(X) its characteristic polynomial.
Then the matrix PA(A) is zero in Mn×n(F).

Proof. Apply Theorem 3.4.8 to T = TA. �

3.5. Nilpotent operators*

This section is of a slightly technical nature and constitutes a preparation for
the Jordan canonical form in the next section. Throughout, all F-vector spaces V
are finite-dimensional.

3.5.1. Definition. Let T : V → V be a linear operator. We say that T is nilpotent
if there exists n ∈ N large enough such that Tn = 0. For brevity we shall call a nil-
space a pair (V, T ) where V is a finite-dimensional F-vector space and T : V → V
is a nilpotent operator. (This is a local terminology only!)

3.5.2. Example. Let V = Fn and T = TA for A =

 0 0 ··· 0 0
1 0 ··· 0 0
0 1 0 0
...

. . .
. . .

...
0 0 1 0

 the square

matrix of size n with 1’s just below the diagonal and zero everywhere else. In other
words, T (e1) = e2, . . . , T (ej) = ej+1,. . . , T (en−1) = en and T (en) = 0. So clearly
Tn(ej) = 0 for all j and therefore Tn = 0. One can also check that Ai has 1’s
on a ‘small diagonal’ i places below the diagonal, and eventually An = 0. (As an
exercise, take n = 4 for instance and compute A2, A3, . . .)

3.5.3. Definition. A cyclic nil-space will be one as in the easy example above:
So (V, T : V → V ) is a cyclic nilspace if Tn = 0 and there exists v ∈ V such that
v, T (v), . . . , Tn−1(v) form a basis of V . Indeed, in that basis the matrix of T is
exactly the matrix A of Example 3.5.2.

Our goal is to show that every nil-space is just a direct sum of cyclic ones. Let
us clarify what the direct sum of nil-spaces means.
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3.5.4. Remark. Let (V1, T1), . . . , (Vr, Tr) be nil-spaces, i.e. each Vi is an F-vector
space and each Ti : Vi → Vi is a nilpotent operator, say Tnii = 0. Define V =
V1 ⊕ · · · ⊕ Vr as in Remark 1.2.26, that is simply the cartesian product and define
T : V → V by mapping (v1, . . . , vr) to (T1(v1), . . . , Tr(vr)). In other words, T is
defined as Ti in the i-th component. This defines a nilpotent operator since Tn = 0
for any n ≥ max{n1, . . . , nr}. In matrix form, if Bi is a basis of Vi and Ai = [Ti]Bi
is the matrix of Ti in that basis then the matrix of T is diagonal by blocks

(3.5.5) [T ]B =

A1 0 0
0 A2

. . .
0 Ar


in the basis B of V obtained from putting the bases B1, . . . , Br ‘together’ (where
b1 ∈ B1 is viewed as (b1, 0, . . . , 0) in V , where b2 ∈ B2 is viewed as (0, b2, 0, . . . 0),
etc, as in the proof of dim(V1 ⊕ · · · ⊕ Vr) = dim(V1) + · · ·+ dim(Vr)).

3.5.6. Remark. Nil-spaces (V, T ) and (V ′, T ′) can be called ‘isomorphic’ if the

following happens: Suppose that S : V
∼→ V ′ is an isomorphism and that T ′ =

S ◦ T ◦ S−1, that is, T ′ is T ‘transported’ to V ′ along the isomorphism V
∼→ V ′

V
∼=
S
//

T

��

V ′

T ′

��

V
∼=
S
// V ′.

In this situation, properties of (V, T ) pass to an isomorphic (V ′, T ′) in the above
sense. For instance, if (V, T ) is cyclic, generated by v (Definition 3.5.3) then (V ′, T ′)
is also cyclic, generated by v′ = S(v). Similarly, if (V, T ) = (V1, T1)⊕ · · · ⊕ (Vr, Tr)
is a direct sum as in Remark 3.5.4 then we can transport this decomposition up
to isomorphism: (V ′, T ′) = (V ′1 , T

′
1) ⊕ · · · ⊕ (V ′r , T

′
r) where V ′i = S(Vi) and T ′i =

S ◦ Ti ◦ S−1. Combining those two remarks, we see that if (V, T ) is a direct sum of
cyclic nil-spaces, then so is the isomorphic (V ′, T ′).

3.5.7. Proposition. Let T : V → V be a nilpotent operator, say TN = 0 for
N ≥ 1 large enough. Then the characteristic polynomial of T is (−1)nXn where
n = dim(V ). In particular, T has only zero as eigenvalue and Tn = 0.

Proof. We can do this in matrix form (with respect to any basis of V ). Let
A ∈ Mn×n(F) such that AN = 0 for N ≥ 1 large enough and let us show that
PA(X) = (−1)nXn. The consequences follow since 0 is the only root of Xn

and An = 0 follows from Cayley-Hamilton Theorem 3.4.8. We can assume that
F is algebraically closed, as Mn×n(F) ⊆ Mn×n(F̄) preserves the characteristic
polynomial, for any algebraic closure F ⊆ F̄ (like for instance under R ⊂ C).
In the case where F is algebraically closed, PA(X) is completely split PA(X) =
(−1)n(X − λ1) · · · (X − λn) and it suffices to show that all the eigenvalues λi are
zero. Let λ ∈ F such that A · x = λx for some x ∈ Fn non-zero. Then by induction
on i ≥ 0 we have Ai · x = λi · x for all i ∈ N. Since AN = 0 we have λN · x = 0
and x 6= 0 in V . Hence λN = 0 in F and therefore λ = 0 since F is a field. So
PA(X) = (−1)n(X − λ1) · · · (X − λn) = (−1)nXn as claimed. �

3.5.8. Corollary. Let T : V → V be nilpotent and v ∈ V be a non-zero vector that
generates V as T -invariant subspace, that is, V = Span(v, T (v), T 2(v), . . .). Let
n = dim(V ). Then Tn(v) = 0 and v, T (v), . . . , Tn−1(v) is a basis of V .
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Proof. By Lemma 3.4.7 (1) the vectors v, . . . , Tn−1(v) form a basis of V and
by Proposition 3.5.7 we have Tn = 0 and in particular Tn(v) = 0. �

3.5.9. Theorem. Let V be a finite-dimensional F-vector space and T : V → V
a nilpotent operator (i.e. (V, T ) is a ‘nil-space’). Then V is a direct sum of T -
invariant subspaces V1, . . . , Vr each of which is cyclic as a nil-space (Vi, T|Vi

) in the

sense of Definition 3.5.3. In particular, V admits a basis B in which the matrix
of T is diagonal by blocks as in (3.5.5), with each Ai having only 1’s below the
diagonal and zero elsewhere, as in Example 3.5.2.

Proof. We proceed by induction on dim(V ). If dim(V ) = 1 there is hardly
anything to prove: A nilpotent T must be zero in that case. So we suppose that we
know the result for all nil-spaces (V ′, T ′) of dimension strictly less than dim(V ).

For each non-zero v ∈ V , there is a smallest k ≥ 1 such that T k(v) = 0. Let us
call this k the order of v. (It should be the order of nilpotence of T at v but well,
life is short.) If we have Tn = 0 then the order of every v is at most n. In particular,
we can pick a non-zero w ∈ V of maximal order d in V . By Corollary 3.5.8, this d
is also dim(W ) where W is the T -invariant subspace generated by w

(3.5.10) W := Span(w, T (w), . . . , T d−1(w)).

So far we have created a T -invariant subspace W ⊆ V of our nil-space (V, T )
and (W,T|W ) is a cyclic nil-space by construction, generated by w ∈ V of order d =

dim(W ) maximal among all the orders of non-zero vectors in V . If W = V we
are done: V is itself cyclic. Otherwise 1 ≤ dim(W ) < dim(V ) and dim(V/W ) =
dim(V )− dim(W ) is strictly less than dim(V ). We claim that the quotient V/W is
a nil-space in a natural way. The following picture could help some readers:

W � � incl //

T|W

��

V
proj

// //

T

��

V/W

T̄

��

W � �

incl
// V

proj
// // V/W

The operator T̄ : V/W → V/W is simply defined by T̄ ([x]W ) = [T (x)]W . In other
words, T̄ ◦ proj = proj ◦T . This is well-defined since T (W ) ⊆W so when [x] = [y],
that is, when x and y are two representatives of the same class, then x − y ∈ W
and therefore T (x)− T (y) = T (x− y) ∈ T (W ) ⊆W and thus [T (x)] = [T (y)]. We
clearly have T̄n = 0 since T̄n([x]) = [Tn(x)] = [0] = 0 for all [x] ∈ V/W .

We can therefore use the statement for the nil-space (V/W, T̄ ) by induction
hypothesis. Hence we have (V/W, T̄ ) = (V̄1, T̄1) ⊕ · · · ⊕ (V̄r, T̄r) for T̄ -invariant
subspaces V̄i ⊆ V/W which are moreover cyclic when viewed as nil-spaces for the
restricted operator T̄i := T̄|V̄i

. We now claim the following:

Claim: There exists a linear transformation S : V/W → V
such that proj ◦S = IdV/W and such that T ◦ S = S ◦ T̄ .

Since V/W = V̄1 ⊕ · · · ⊕ V̄r it suffices to construct Si : V̄i → V one subspace at a
time in such a way that proj ◦Si = IdV̄i and T ◦ Si = Si ◦ T̄i. Indeed, we can then

define S : V/W = V̄1⊕· · ·⊕ V̄r → V by setting S(v̄1, . . . , v̄r) = S1(v̄1)+ · · ·+Sr(v̄r)
and check the claim for this S.
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Fix one i ∈ {1, . . . , r} for a moment. To construct our Si : V̄i → V we are
going to use that (V̄i, T̄i) is cyclic. Let v̄ ∈ V̄i be a generator, so that if we set
` := dim(V̄i) ≥ 1 then v̄ has order ` and V̄i has basis

(3.5.11) v̄, T̄ (v̄), . . . , T̄ `−1(v̄)

by Corollary 3.5.8. To construct Si : V̄i → V it suffices to construct Si on the
above basis elements. The condition proj ◦Si = Id means that Si(v̄) must be some
representative of the class v̄ ∈ V/W , and similarly for all other basis vectors T̄ j(v̄).
But we also want Si ◦ T̄ = T ◦ Si and therefore Si ◦ T̄ j = T j ◦ Si for all j. In
other words, once we decide what the image v := Si(v̄) of v̄ should be, then all the
images of all T̄ i(v̄) are forced: Each T̄ j(v̄) must be mapped to T j(v):

v̄_

Si

��

1
T̄

))

T̄ (v̄)
_

Si

��

+ T̄
**

T̄ 2(v̄)
_

Si

��

) T̄
&&
· · ·

0
T̄
++

T̄ `−1(v̄)
_

Si

��

' T̄
,,

T̄ `(v̄) = 0
_

Si

��

v 
T

55
T (v)

�
T

44
T 2(v)

�
T

88 · · · �
T

44
T `−1(v)

�
T

22
T `(v) =

?
0

chosen

OO

forced

OO

forced

OO

· · · forced

OO

oopsy-daisy

OO

All this is well and would yield Si : V̄i → V such that proj ◦Si = Id and almost
such that T ◦ Si = Si ◦ T̄ except that for the very last basis vector b = T̄ `−1(v̄)
in (3.5.11), we have Si(b) = T `−1(v) by definition and we have T̄ (b) = T̄ `(v̄) = 0
and therefore Si ◦ T̄ (b) = 0. However, it is not clear why T ◦Si(b) should be zero (as
indicated by the question mark ‘?’ above). Indeed T (Si(b)) = T (T `−1(v)) = T `(v)
and we have no guarantee that the chosen representative v of v̄ satisfies T `(v) = 0.

Let us start with an imperfect v ∈ V such that v̄ = [v] and let us ‘correct’ it. We
have 0 = T̄ `(v̄) = [T `(v)], which means that T `(v) ∈ W = Span(w, . . . , T d−1(w)).
See (3.5.10). We can therefore find a0, . . . , ad−1 ∈ F such that

(3.5.12) T `(v) = a0w + a1T (w) + · · ·+ ad−1T
d−1(w).

Let k be the order of v in V . Since T̄ k(v̄) = [T k(v)] = 0 and since v̄ has order `, we
see that k ≥ `. Since d was the maximal order in V , we also have k ≤ d. In short
we have ` ≤ k ≤ d. Applying T d−` to (3.5.12) we get

T d(v) =

d−1∑
i=0

aiT
d−`+i(w).

Using that T d(v) = 0 since d ≥ k and T j(w) = 0 for all j ≥ d, many terms become
zero above (namely T d−`+i(w) = 0 if d− `+ i ≥ d, that is, i ≥ `) we are left with

0 =

`−1∑
i=0

aiT
d−`+i(w).

But in that range, j ∈ {d− `, . . . , d− 1} the T j(w) are linearly independent. So we
have established

a0 = . . . = a`−1 = 0.
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Since ` ≥ 1 we have at least some information here! We can rewrite (3.5.12) as

T `(v) = a`T
`(w) + a`+1T

`+1(w) + · · ·+ ad−1T
d−1(w).

By linearity, this means that T `(v′) = 0 where

v′ = v −
(
a`w + a`+1T (w) + · · ·+ ad−1T

d−`−1(w)
)
.

Note that this v′ is just v modified by a vector of W . In particular [v′] = [v] = v̄
is our generator of V̄i. In other words, v′ is as good as v but satisfies in addition
T `(v′) = 0. By the above discussion, we can now construct Si : V̄i → V by sending
the basis vectors (2.4.22) to T (v′), . . . , T `−1(v′) respectively.

At this stage, we have proved the Claim. So we have S : V/W → V a section
of proj : V → V/W (meaning proj ◦S = IdV/W ), which is ‘invariant’ with respect

to the nilpotent operators, meaning T ◦ S = S ◦ T̄ . It follows that S is injective
hence yields an isomorphism S : V/W

∼→ Im(S) onto its image in V ; its inverse
is given by proj : Im(S) → V/W . Since T ◦ S = S ◦ T̄ , it follows that Im(S) is
a T -invariant subspace of V and that S gives an isomorphism of nil-spaces as in
Remark 3.5.6 between (V/W, T̄ ) and (Im(S), T|Im(S)

). In particular, that image is a

sum of cyclic nil-spaces, since V/W was. As vector spaces, we have V = W ⊕Im(S)
(Remark 2.7.12) and this is a sum of nil-spaces by the T -invariance of each subspace.
The nil-space (W,T|W ) is cyclic by construction and (Im(S), T|Im(S)

) is a sum of

cyclic nil-spaces. Hence their sum V is again a sum of cyclic nil-spaces. �

3.6. Jordan canonical form*

As before, throughout this section V is a finite-dimensional F-vector space. Let
us start with an independently useful result.

3.6.1. Lemma (Fitting’s Lemma). Let S : V → V be a linear operator, where V is
finite-dimensional. Then there exists (canonical) S-invariant subspaces W1 and W2

such that V = W1 ⊕W2 and S|W1
: W1 → W1 is nilpotent, namely Sd|W1

= 0 for

d = dim(W1), and where S|W2
: W2

∼→ W2 is an isomorphism. Hence there is a

basis B of V in which [S]B =
(
A1 0
0 A2

)
is diagonal by blocks, with A1 a nilpotent

matrix and A2 an invertible matrix.

Proof. Consider the two towers of subspaces of V :

Ker(S) ⊆ Ker(S2) ⊆ · · · ⊆ Ker(Si) ⊆ Ker(Si+1) ⊆ · · · ⊆ V
(indeed if Si(x) = 0 then Si+1(x) = S(Si(x)) = S(0) = 0) and

V ⊇ Im(S) ⊇ Im(S2) ⊇ · · · ⊇ Im(Si) ⊇ Im(Si+1) ⊇ · · ·
(indeed if x = Si+1(y) for some y then x = Si(S(y))). At each step in either
tower, a strict inclusion means the dimension of the smaller subspace is at least
one less than the dimension of the bigger one. Since dim(V ) is finite there can only
be finitely many such strict inclusions (namely, at most dim(V ) strict inclusions).
In other words, beyond finitely many steps in either tower, these ⊆ and ⊇ are all
equalities. Hence there exists ` ≥ 1 large enough so that

(3.6.2) Ker(S`) = Ker(Sm) and Im(S`) = Im(Sm)

for all m ≥ `. We are going to use this for m = 2` mostly. We claim that
W1 = Ker(S`) and W2 = Im(S`) satisfy the statement. It is easy to check that they
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are S-invariant. Let us see why W1 ∩W2 = 0. Suppose that x ∈ Ker(S`)∩ Im(S`).
Then x = S`(y) for some y ∈ V and 0 = S`(x) = S2`(y); so we just proved
y ∈ Ker(S2`) = Ker(S`) by (3.6.2) and therefore 0 = S`(y) = x. To see that
W1 +W2 = V , pick x ∈ V and consider S`(x) ∈ Im(S`) = Im(S2`); this means that
S`(x) = S2`(z) for some z ∈ V . But then x = w1 +w2 where w1 = (x−S`(z)) and
w2 = S`(z) (duh!) and we claim that wi ∈ Wi for i = 1, 2. The second is obvious
w2 = S`(z) ∈ Im(S`) =: W2. The first one is easy too: S`(w1) = S`(x)−S2`(z) = 0
by construction of z. �

3.6.3. Corollary. Let T : V → V be a linear operator on a finite-dimensional F-
vector space. Suppose that the characteristic polynomial of T is completely split,
say PT (X) = (−1)n(X−λ1)m1 · · · (X−λr)mr for r distinct eigenvalues λ1, . . . , λr ∈
F with multiplicities m1, . . . ,mr ≥ 1. For every j = 1, . . . , r let

Wj =
{
x ∈ V

∣∣ there exists ` ≥ 1 with (T − λj IdV )`(x) = 0
}
.

the subspace of vectors on which T − λj IdV is nilpotent. Then every Wj is T -
invariant and dim(Wj) = mj and V = W1 ⊕ · · · ⊕Wr. In particular, there exists a

basis B of V such that [T ]B =

A1

A2 0

0
...

Ar

 is diagonal by block with each block

Aj ∈ Mmj×mj (F) is such that Aj − λjImj is nilpotent.

Proof. By induction on r. If r = 1 then PT (X) = (−1)n(X − λ1)n and we
can take W1 = V by Cayley Hamilton Theorem 3.4.8. Suppose r ≥ 2 and that we
know the result for r − 1.

By Fitting’s Lemma 3.6.1 applied to S = T−λ1 IdV , we know that V = W1⊕W ′
where W1 and W ′ are S-invariant and therefore T -invariant (as T = S + λ1 IdV
and every subspace is (λ1 IdV )-invariant). If we build a basis C by assembling
a basis of W1 and one of W ′, the matrix of T in that basis will be diagonal by
block [T ]C =

(
A1 0
0 A′

)
with A1 − λ1Id nilpotent and A′ − λ1Ie invertible, where

d = dim(W1) and e = n− d = dim(W ′). We want to see that d = m1 as predicted
by the characteristic polynomial. Indeed, we have PT (X) = P1(X) · P ′(X) where
P1 = PA1 = PT|W

and P ′ = PA′ = P(T|
W ′

) (not the derivative). Since A1− λ1Id is

nilpotent, we know that P1(X) = PA1
(X) = (−1)d(X−λ1)d (by Proposition 3.5.7).

Therefore P ′ = (−1)e(X − λ1)m1−d(X − λ2)m2 · · · (X − λr)mr and to show that
d = m1 it suffices to check that λ1 cannot be a root of P ′ = PA′ . Indeed, if there was
a non-zero x ∈W ′ such that T|W ′

(x) = λ1x then S(x) = 0; but S is invertible on W ′

so x = 0 a contradiction. So d = m1 as announced. Therefore T ′ = T|W ′
: W ′ →W ′

has a completely split polynomial P ′(X) = (−1)e(X − λ2)m2 · · · (X − λr)mr with
r−1 distinct roots. We conclude by induction hypothesis applied to W ′ and T ′. �

The main result is now an easy corollary.

3.6.4. Theorem (Jordan Canonical Form). Let T : V → V be a linear operator
on a finite-dimensional F-vector space. Suppose that the characteristic polynomial
of T is completely split (for instance, if F is algebraically closed, like F = C).
Say PT (X) = (−1)n(X−λ1)m1 · · · (X−λr)mr for r distinct eigenvalues λ1, . . . , λr ∈
F with algebraic multiplicities m1, . . . ,mr ≥ 1. Then V admits a basis B in which
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the matrix of T is diagonal-by-blocks

[T ]B =

A1 0 0
0 A2

...
0 Ar


and each matrix Aj is itself diagonal by blocks

Aj =


Aj,1 0 0

0 Aj,2

...
0 Aj,sj


with diagonal blocks of the form Aj,k =

 λj 0 ··· 0
1 λj 0 ··· 0

...
...

0 1 λj

. Moreover, all this data

is unique up to permutation of the λ1, . . . , λr and permutation of the blocks.

Proof. We have seen in Corollary 3.6.3 that V = W1 ⊕ · · · ⊕ Wr for T -
invariant subspaces Wj on which Sj := T|Wj

− λj IdWj
is nilpotent. We can then

apply Theorem 3.5.9 to find a basis of Wj in which Sj is diagonal by block, with
blocks as in Example 3.5.2. In that basis, the matrix of T|Wj

= Sj + λ IdWj
is the

one for Sj plus λj times the (small) identity matrix (changing only the diagonal).
The result is a matrix like Aj of the theorem. Hence the result.

Uniqueness is not too hard but we leave it as an exercise. The eigenval-
ues λ1, . . . , λr are unique up to renumbering them: They are the root of the charac-
teristic polynomial. Now, if we take any basis B as in the statement, one considers
the dimensions d(j, `) = Ker((T − λj · IdV )`) for various `. These increasing num-
bers, as ` increases, force the number and the size of the matrices Aj,k for all k
to be unique. Indeed, for ` very large, we have d(j, `) = mj and as ` goes down,
the d(j, `) go down (or stay the same). For instance, the biggest d(j, `) smaller
than mj differs from mj because some of the nilpotent matrices on the diagonal of
Sj , as in Example 3.5.2, are not zero. This happens for the largest such matrices
only. So that d(j, `) tells us how many Aj,k there are with maximal size. Letting
` go down, the next step will reveal the Aj,k with the next smaller size, etc, until
` = 1. At that point, we know the sizes of all Aj,k uniquely in terms of T and λj .
Since the size of Aj,k characterizes Aj,k entirely, we are done. Details are left to
the interested reader. �



CHAPTER 4

Inner product spaces

In the whole chapter the field F is either the field R
of real numbers or the field C of complex numbers.

We shall write complex conjugation of a scalar c ∈ F by c̄. So, when F = R, this
simply means the identity: c̄ = c for all c ∈ R. When F = C =

{
a + bi

∣∣ a, b ∈ R
}

then a+ bi = a− bi. Recall that c+ d = c̄+ d̄ and c · d = c̄ · d̄. Also, if c = a+ bi
then c · c̄ = a2 + b2 = |c|2. This real number |c| is often called the norm, or the
modulus, or the absolute value of c. If c 6= 0 then |c| 6= 0 and c−1 = c̄

|c|2 = a−bi
a2+b2 .

4.1. Inner product

We follow the pattern of previous chapters. The main definition isolates ax-
iomatically a situation that occurs in lots and lots of examples.

4.1.1. Definition. Let V be an F-vector space over F = R or C. An inner product
(or scalar product) on V is a function

〈−,−〉 : V × V // F

(x, y) � // 〈x, y〉

such that the following equalities hold in F:

(IPS 1) 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 for all x, x′, y ∈ V .
(IPS 2) 〈c · x, y〉 = c · 〈x, y〉 for all x, y ∈ V and c ∈ F.

(IPS 3) 〈y, x〉 = 〈x, y〉 for all x, y ∈ V .

Note that plugging x = y in (IPS 3) forces 〈x, x〉 to belong to R, even when F = C.

(IPS 4) For every x 6= 0 in V we have 〈x, x〉 > 0.

The pair (V, 〈−,−〉) consisting of a vector space and an inner product is called an
inner product space. It is common to simply say that V is an inner product space,
the inner product 〈−,−〉 being understood.

4.1.2. Remark. Let us discuss some immediate consequences. First note that
Axioms (IPS 1) and (IPS 2) tell us that for a fixed y ∈ V , the function

〈−, y〉 : V // F

x � // 〈x, y〉

is linear. We say that 〈−,−〉 is linear in the first variable. It is also linear in the
second variable when F = R but it is not linear in the second variable when F = C.
Indeed, combining with (IPS 3) we can prove:

(IPS 1’) 〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉 for all x, y, y′ ∈ V .

83
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Indeed 〈x, y + y′〉 = 〈y + y′, x〉 = 〈y, x〉+ 〈y′, x〉 = 〈y, x〉+ 〈y′, x〉 = 〈x, y〉+ 〈x, y′〉.
(IPS 2’) 〈x, c · y〉 = c̄ · 〈x, y〉 for all x, y ∈ V and c ∈ F.

Indeed 〈x, c y〉 = 〈c y, x〉 = c · 〈y, x〉 = c̄ · 〈y, x〉 = c̄ · 〈x, y〉.

4.1.3. Remark. By (IPS 2) we have 〈0, 0〉 = 0. So we can rewrite (IPS 4) as saying
that 〈x, x〉 ≥ 0 for all x ∈ V and that 〈x, x〉 = 0 forces x = 0.

4.1.4. Definition. Let (V, 〈−,−〉) be an inner product space. The norm of a

vector x ∈ V is the non-negative real number ||x|| =
√
〈x, x〉. This is well-defined

by (IPS 4) and Remark 4.1.3 tells us that ||x|| = 0 if and only if x = 0.

4.1.5. Remark. The norm is compatible with the action: for all c ∈ F and x ∈ V

(4.1.6) ||c · x|| = |c| · ||x||.

Indeed, ||c · x||2 = 〈c · x, c · x〉 = c · c̄ · 〈x, x〉 = |c|2 · 〈x, x〉 = |c|2 · ||x||2 and since
|c| ≥ 0 and 〈x, x〉 ≥ 0 we can take the square root on both sides and get (4.1.6).

However, the compatibility with the sum is less straightforward. We shall
discuss this after the examples.

4.1.7. Example. Let n ∈ N. Then Fn admits the standard inner product

〈

[
x1

...
xn

]
,

[ y1
...
yn

]
〉 := x1 · ȳ1 + · · ·+ xn · ȳn =

n∑
i=1

xiȳi.

In particular, if F = R, this is the usual scalar product (a. k. a. dot product)
〈x, y〉 =

∑n
i=1 xiyi for every x, y ∈ Rn. The associated norm is the ‘usual’ eu-

clidean norm ||x|| =
√
x2

1 + · · ·+ x2
n on Rn. On Cn the (complex) norm is ||z|| =√

z1z̄1 + · · ·+ znz̄n =
√
|z1|2 + · · ·+ |zn|2, for every z ∈ Cn.

If we identify Fn = Mn×1(F) with column vectors, we can write the inner
product as a matrix multiplication

(4.1.8) 〈x, y〉 = xt · ȳ

where xt = [x1 · · · xn] is the transpose and ȳ =

[
ȳ1

...
ȳn

]
is complex-conjugation

componentwise. Alternatively, using the trace tr : Mn×n(F) → F we can write
〈x, y〉 as

(4.1.9) 〈x, y〉 = tr(x · ȳt)

since x · ȳt is the (n× n)-matrix (xi · ȳj)i,j . The latter formula can be generalized.

4.1.10. Exercise. Let V = Mp×q(F). Define 〈−,−〉 : V × V → M1×1(F) ∼= F by

〈A,B〉 = tr(A · B̄t)

for all A,B ∈ V . Verify that this defines an inner product space.

4.1.11. Exercise. Generalize Example 4.1.7 to the free space F(I) for every set I.
(And appreciate how this would not make sense for FI .)

4.1.12. Example. Let V = Cont([a, b],F) =
{
f : [a, b] → F

∣∣ f is continuous
}

be
the F-vector space of continuous functions on the interval [a, b] ⊂ R, for a < b.
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These are either real-valued or complex-valued continuous functions. In particular,
they are integrable and we can define

〈f, g〉 =

∫ b

a

f(t) · g(t) dt

Note how the sum is replaced by an integral. The verification of (IPS 1)–(IPS 4)
uses standard properties of the integral. For instance, for (IPS 4), if f : [a, b] → F
is a non-zero function then f · f̄ : [a, b]→ R is everywhere non-negative and strictly

positive at those t ∈ [a, b] where f(t) 6= 0. It follows that
∫ b
a
f(t) · f̄(t) dt > 0.

So far, we have reviewed the standard vector spaces of Chapter 1, free ones,
vector spaces of matrices, vector spaces of functions, and seen how they typically
admit an inner product space. Another source of vector spaces in Chapter 1 was
the notion of subspace. The interplay with inner product is very easy:

4.1.13. Proposition. Let (V, 〈−,−〉) be an inner product space. Then every sub-
space W ⊆ V is an inner product space with the restricted inner product defined
by 〈x, y〉W = 〈x, y〉 for all x, y ∈W .

Proof. Axioms (IPS 1)–(IPS 4) are trivially true in W , since true in V . �

At this point, we have an avalanche of examples of inner product spaces: All
the ‘standard’ ones, and all their subspaces. We draw geometric intuition from R2

and R3 with their usual scalar product to extend some definitions, like:

4.1.14. Definition. Let V be an inner product space. We say that two vectors
x, y ∈ V are orthogonal and write x ⊥ y if 〈x, y〉 = 0.

For a subset (often a subspace) W ⊆ V , the orthogonal of W is

W⊥ =
{
x ∈ V

∣∣x ⊥ w for all w ∈W
}
.

4.1.15. Exercise. Prove that W⊥ is a subspace of V and that W ⊆ (W⊥)⊥. Prove
that when V is finite dimensional then dim(W⊥) = dim(V ) − dim(W ). Conclude
that in this case (W⊥)⊥ = W .

The following is close to trivial but very useful.

4.1.16. Proposition. We have V ⊥ = 0. In other words, if x ∈ V is such that
〈x, y〉 = 0 for all y ∈ V then x = 0.

Proof. Indeed, plugging y = x itself, we are assuming that 〈x, x〉 = 0. This
forces x = 0 by (IPS 4); see Remark 4.1.3. �

Here is an important general result about inner product spaces.

4.1.17. Theorem (Cauchy-Schwarz Inequality). Let V be an inner product space
and x, y ∈ V . Then the absolute value of the (real or complex) number 〈x, y〉 is
bounded by the product of the norms of x and y, that is, we have (in R)

|〈x, y〉| ≤ ||x|| · ||y||.
Moreover, we have equality if and only if x, y are colinear (i.e. linearly dependent).

Proof. Suppose that x, y are linearly dependent. In that case, up to swapping
x and y if one of them is zero, we can assume that x = c · y for some c ∈ F. Then
〈x, y〉 = 〈cy, y〉 = c · 〈y, y〉, hence |〈x, y〉| = |c| · ||y||2 = (c · ||y||) · ||y|| = ||x|| · ||y||.
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Suppose that x, y are linearly independent and let us show the strict inequality
|〈x, y〉| < ||x|| · ||y||. The only source of strict inequalities is Axiom (IPS 4). We

are going to apply it to a vector of the form y − c · x for c = 〈y,x〉
〈x,x〉 = 〈x,y〉

〈x,x〉 . Note

that since x, y are linearly independent we have x 6= 0, hence 〈x, x〉 6= 0; so c is
well-defined. Note also that we cannot have y − c · x = 0 for then y ∈ Span(x)
would break linear independence. Axiom (IPS 4) then tells us that in R we have

0 < 〈y − c · x , y − c · x〉 since y − c · x 6= 0

= 〈y, y〉 − c · 〈x, y〉 − c̄ · 〈y, x〉+ cc̄〈x, x〉 by (IPS 1),(IPS 1’),(IPS 2),(IPS 2’)

= 〈y, y〉 − c · 〈x, y〉 − c̄ · 〈x, y〉+ cc̄〈x, x〉 by (IPS 3)

= 〈y, y〉 − |〈x,y〉|
2

〈x,x〉 −
|〈x,y〉|2
〈x,x〉 + |〈x,y〉|2

〈x,x〉 since c = 〈y,x〉
〈x,x〉 and 〈y, x〉 = 〈x, y〉.

= 〈y, y〉 − |〈x,y〉|
2

〈x,x〉 .

Re-arranging the terms we get |〈x, y〉|2 < 〈x, x〉 · 〈y, y〉 = ||x||2 · ||y||2. �

We can use Cauchy-Schwarz to answer the question left open in Remark 4.1.5.

4.1.18. Corollary (Triangle Inequality). Let V be an inner product space and let
x, y ∈ V . Then

||x+ y|| ≤ ||x||+ ||y||.
Moreover, we have equality if and only if y = 0 or x = λ · y for some λ ∈ R, λ ≥ 0.

Proof. We compute in R:

||x+ y||2 = 〈x+ y, x+ y〉 by definition of the norm

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 by (IPS 1),(IPS 1’)

= 〈x, x〉+ 〈x, y〉+ 〈x, y〉+ 〈y, y〉 by (IPS 3).

Here it is important to note that the last expression uses complex numbers but
the sum is real. We see the complex number d = 〈x, y〉 and its complex-conjugate

d̄ = 〈x, y〉. Their sum d+ d̄ is a real number: For every complex number d = a+ bi

we have d+ d̄ = 2a and in fact d+ d̄ = 2a ≤ 2 · |a| = 2 ·
√
a2 ≤ 2 ·

√
a2 + b2 = 2 · |d|.

Note en passant that the only way that this inequality

(4.1.19) d+ d̄ ≤ 2 · |d|
is an equality is to have b = 0 and a ≥ 0, that is, to have d ∈ R≥0 a non-negative
real number. Applying (4.1.19) to our d = 〈x, y〉 we can continue our computation

||x+ y||2 = 〈x, x〉+ 〈x, y〉+ 〈x, y〉+ 〈y, y〉 (where we left things)

≤ 〈x, x〉+ 2 |〈x, y〉|+ 〈y, y〉 by (4.1.19) for d = 〈x, y〉
≤ 〈x, x〉+ 2 ||x|| · ||y||+ 〈y, y〉 by Cauchy-Schwarz 4.1.17

= ||x||2 + 2 ||x|| · ||y||+ ||y||2 by definition of the norm

= (||x||+ ||y||)2.

We get the result by taking square roots. Now the only way to have an equality
is to have both inequalities to be equalities. In Cauchy-Schwarz, this happens
only if x and y are linearly dependent. In (4.1.19) we have equality only if d is a
nonnegative real number. If y = 0 there is nothing to prove. If y 6= 0 and x = λy (to
get equality in Cauchy-Schwarz) for some λ ∈ F then we also need d = 〈x, y〉 ∈ R≥0

but 〈x, y〉 = 〈λy, y〉 = λ · ||y||2 and ||y||2 > 0. Hence λ = d
||y||2 must be real and
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non-negative as well. So we have shown that ||x+ y|| = ||x||+ ||y|| forces y = 0 or
x = λ y for λ ∈ R≥0. The converse is an easy exercise. �

4.1.20. Exercise. Show that one can recover the inner product from the norm.
Specifically, for F = R we have 〈x, y〉 = 1

2 (||x+y||2−||x||2−||y||2). Show that there
is such a formula for F = C as well.

4.1.21. Remark. Let T : V → V ′ be a linear transformation between two inner
product spaces, with respective inner products 〈−,−〉 and 〈−,−〉′. Suppose that T
preserves the inner products, i.e.

〈T (x), T (y)〉′ = 〈x, y〉

for all x, y ∈ V . In particular, this forces ||T (x)||′ = ||x|| for all x ∈ V and this is in
fact equivalent by Exercise 4.1.20. If this holds, we have Ker(T ) = 0 since T (x) = 0
would force ||x|| = ||T (x)||′ = 0 and thus x = 0. In particular, if T : V → V is
an operator that preserves the inner product and if V id finite-dimensional then T
is automatically an isomorphism. This explains why we usually reserve the name
‘iso-metry’ (same-metrics) for bijections:

4.1.22. Definition. An isometry between two inner product spaces V and V ′ is
an isomorphism T : V → V ′ such that 〈T (x), T (y)〉′ = 〈x, y〉 for all x, y ∈ V , or
equivalently, ||T (x)||′ = ||x|| for all x ∈ V .

4.2. Orthonormal bases

If we continue our tour of Chapter 1 with an inner product, the next stop is the
notion of basis. Of course, an inner product space (, 〈−,−〉) still has bases in the
ordinary sense (infinitely many unless V = 0). The point is that some bases are
better behaved.

4.2.1. Definition. A collection of vector B ⊂ V in an inner product space is called
orthonormal if

(a) For all b, b′ ∈ B with b 6= b, we have b ⊥ b′
(b) For all b ∈ B we have ||b|| = 1.

We can write both conditions with the Kronecker symbol: For all b, b′ ∈ B we want

〈b, b′〉 = δb,b′ =

{
1 if b = b′

0 if b 6= b′
.

An orthonormal basis B of V is a basis that is orthonormal.

4.2.2. Exercise. Verify that the canonical basis is orthonormal in Fn with the
standard inner product.

4.2.3. Exercise. Show that the set
{
fn = (t 7→ e2πnti)

∣∣n ∈ Z
}

is orthonormal in
the complex inner product space Cont([0, 1],C) of Example 4.1.12.

4.2.4. Exercise. Show that the set
{
gn = (t 7→ cos(2πnt))

∣∣n ∈ N
}
∪
{
hn =

(t 7→ sin(2πnt))
∣∣n ∈ N, n 6= 0

}
is orthonormal in the real inner product space

Cont([0, 1],R) of Example 4.1.12.
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4.2.5. Lemma. Let b1, . . . , bn be n orthonormal vectors in an inner product space V
and let x ∈ Span(b1, . . . , bn). Suppose x =

∑n
i=1 ai · bi for a1, . . . , an ∈ F. Then

ai = 〈x, bi〉
for all i = 1, . . . , n.

Proof. Let j be an index 1 ≤ j ≤ n. We compute

〈x, bj〉 = 〈
n∑
i=1

aibi, bj〉 =

n∑
i=1

ai〈bi, bj〉 =

n∑
i=1

aiδi,j = aj .

Hence the result, by rewriting. �

4.2.6. Proposition. If B ⊂ V is orthonormal, then B is linearly independent.
Hence it is an orthonormal basis of Span(B).

Proof. Suppose that b1, . . . , bn ∈ B are n distinct vectors in B and that∑n
i=1 ai · bi = 0 for a1, . . . , an ∈ F. Apply Lemma 4.2.5 for x = 0. We get

ai = 〈0, bi〉 = 0 for all i = 1, . . . , n. �

4.2.7. Remark. We can restate the property that a basis B = {b1, . . . , bn} of an

inner product space V is orthonormal in terms of the isomorphism [−]B : V
∼→ Fn

associated to B (see Theorem 2.3.10). Indeed, being orthonormal exactly means

that [−]B : V
∼→ Fn is an isometry in the sense of Definition 4.1.22.

4.2.8. Proposition. Let B = {b1, . . . , bn} be a basis of an inner product space V
of dimension n. Then B is orthonormal if and only if

〈x, y〉 = 〈[x]B , [y]B〉Fn
where the right-hand side is the standard inner product of Example 4.1.7.

Proof. Easy exercise on the definitions. �

Orthonormal bases are particulary convenient to compute coordinates.

4.2.9. Proposition. Let B = {b1, . . . , bn} be an orthonormal basis of an inner
product space V of finite dimension n. Then for every x ∈ V we have

(4.2.10) x =
n∑
i=1

〈x, bi〉 · bi.

In other words, the coordinates of x are given by [x]B =

[ 〈x,b1〉
...

〈x,bn〉

]
.

Proof. This is simply rewriting Lemma 4.2.5, with the word ‘coordinates’ (for
the ai) and the notation [x]B . �

Remarkably, the right-hand side of (4.2.10) is useful even if x does not belong
to Span(B).

4.2.11. Theorem. Let V be an inner product space and W ⊆ V be a subspace
of dimension n ≥ 1. Let B = {b1, . . . , bn} ⊂ W be a orthonormal basis of the
subspace W . Let x ∈ V and define w ∈W by

w =

n∑
i=1

〈x, bi〉 · bi.



4.2. ORTHONORMAL BASES 89

Then (x− w) ∈W⊥. That is, we wrote x = w + (x− w) in W +W⊥.
In particular, we have V = W ⊕W⊥ and the linear transformation

proj⊥W : V // W

x � //
∑n
i=1〈x, bi〉 · bi

is the orthogonal projection of V onto W (along W⊥). Its image is W . Its kernel

is W⊥. And we have proj⊥W ◦proj⊥W = proj⊥W .

Proof. As often with long statements, everything is already there and the
proof is easy. For the first part, apply Lemma 4.2.5 again, this time to w =∑n
i=1〈x, bi〉 ·bi as in the statement. Lemma 4.2.5 tells us that the coefficient of bi in

this linear combination is 〈w, bi〉. This proves that 〈x−w, bi〉 = 〈x, bi〉−〈w, bi〉 = 0.
In other words, (x − w) ⊥ bi for all i = 1, . . . , n. It follows that (x − w) ⊥ z for
all z ∈ Span(b1, . . . , bn) = W . Hence (x−w) ∈W⊥ as claimed. So x = w+(x−w) ∈
W +W⊥.

So we proved that W + W⊥ = V (as x could be taken arbitrary in the first
part). We have W ∩W⊥ = 0 by (IPS 4) or Remark 4.1.3: If y ∈ W ∩W⊥ then
〈y, y〉 = 0 since the left-hand y belongs to W and the right-hand one belongs

to W⊥. In short, V = W ⊕W⊥. It is easy to see that proj⊥W is well-defined (lands
in Span(b1, . . . , bn) = W ) and linear (each 〈−, bi〉 is).

Every y ∈ W satisfies proj⊥W (y) = y by Proposition 4.2.9. Hence proj⊥W is

onto and applying this to y = proj⊥W (x) for x ∈ V we see that proj⊥W (proj⊥W (x)) =

proj⊥W (x). Finally, if proj⊥W (x) = 0 then x = w+(x−w) with w = 0 and x−0 ∈W⊥
means x ∈ W⊥. The converse is clear: If x ∈ W⊥ then 〈x, bi〉 = 0 for all i since

bi ∈W and therefore proj⊥W (x) = 0. �

In view of the convenience of orthonormal bases to compute coordinates, it
is important to decide whether (finite-dimensional) inner product spaces always
admit orthonormal bases, and how to construct them. Enter Gram-Schmidt.

4.2.12. Lemma. Let b1, . . . , bm be m ≥ 1 orthonormal vectors in an inner product
space V and let W := Span(b1, . . . , bm). Let v ∈ V .

(1) Define v′ = v − proj⊥W (v) = v −
∑m
i=1〈v, bi〉 · bi. Then v′ 6= 0 if and only if

v /∈ W if and only if b1, . . . , bm, v are linearly independent. In that case, we
have Span(b1, . . . , bm, v) = Span(b1, . . . , bm, v

′).
(2) Suppose that v′ 6= 0 in (1) and let bm+1 = ||v′||−1 · v′. Then b1, . . . , bm+1 are

orthonormal and Span(b1, . . . , bm, v) = Span(b1, . . . , bm, bm+1).

Proof. For (1), we have v′ = 0 if and only if v = proj⊥W (v) if and only if v ∈W
by Theorem 4.2.11. The last equivalence is Lemma 1.6.12. Finally, we can prove
both inclusions Span(b1, . . . , bm, v) ⊆ Span(b1, . . . , bm, v

′) and Span(b1, . . . , bm, v
′) ⊆

Span(b1, . . . , bm, v) from the constructions, since v = v′ + proj⊥W (v).
For (2), we already know that b1, . . . , bm are orthonormal, so it suffices to show

that 〈bm+1, bj〉 = 0 for 1 ≤ j ≤ m and that ||bm+1|| = 1. The latter is obvious since
we ‘normed’ v′. For the former, since bm+1 ∈ Span(v′) if suffices to know that v′ ⊥
W = Span(b1, . . . , bm). But this is Theorem 4.2.11 since v′ = v−proj⊥W (v). The last
equality Span(b1, . . . , bm, v) = Span(b1, . . . , bm, bm+1) is easy since we already saw
Span(b1, . . . , bm, v) = Span(b1, . . . , bm, v

′) and bm+1 is a non-zero multiple of v′. �
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4.2.13. Theorem (Gram-Schmidt Orthonormalization Algorithm). Let v1, . . . , vn
be a basis of an inner product space V . We define b1, . . . , bn inductively. Set

b1 =
1

||v1||
· v1.

Suppose defined b1, . . . , bm for 1 ≤ m ≤ n − 1 that are orthonormal and such that
Span(b1, . . . , bm) = Span(v1, . . . , vm). Define

v′m+1 = vm+1 − proj⊥Span(b1,...,bm)(vm+1) = vm+1 −
m∑
i=1

〈vm+1, bi〉 · bi.

Then v′m+1 6= 0 and we can define

bm+1 =
1

||v′m+1||
· v′m+1.

Eventually, we obtain an orthonormal basis b1, . . . , bn of V .

Proof. This is a simple induction on Lemma 4.2.12. We prove by induction
on m with m ≤ n that b1, . . . , bm are well-defined and form an orthonormal basis
of Span(v1, . . . , vm). This claim for m = n is the statement. This clearly holds for
m = 1. Once this holds for some m ≤ n − 1, then we can apply Lemma 4.2.12
to v = vm+1. Since v1, . . . , vm+1 are linearly independent, we have vm+1 /∈
Span(v1, . . . , vm) = Span(b1, . . . , bm) and we can apply Part (1) of the lemma,
and then Part (2). This yields bm+1 such that b1, . . . , bm+1 form an orthonormal
basis of Span(b1, . . . , bm, vm+1) = Span(v1, . . . , vm, vm+1) as claimed. �

4.2.14. Corollary. Any finite-dimensional inner product space admits an orthonor-
mal basis.

Proof. Feed any (finite) basis into Theorem 4.2.13. �

4.2.15. Remark. As usual, subspaces are vector spaces in their own right. And
subspaces of inner product spaces are inner product spaces by Proposition 4.1.13.
So we can always find an orthonormal basis of any finite-dimensional subspace, as
in Theorem 4.2.11. Hence we can always find an explicit formula for the orthogonal
projection, at least in finite dimension.

4.2.16. Remark. If you feed n vectors v1, . . . , vn to Gram-Schmidt without prior
verification that they were linearly independent, the process could collapse with
some v′m+1 = 0 (making it impossible to define bm+1 since you cannot divide by
0 = ||v′m+1|| in that case). This simply indicates that vm+1 ∈ Span(b1, . . . , bm) =
Span(v1, . . . , vm) by Lemma 4.2.12 (1). One can then remove vm+1 without chang-
ing the span of v1, . . . , vn and restart Gram-Schmidt.

4.2.17. Exercise. Apply the Gram-Schmidt algorithm to the vectors v1 =
[

1
2
3

]
,

v2 =
[

4
5
6

]
, v3 =

[
7
8
9

]
of the standard inner product space R3. Find an orthonormal

basis of Span(v1, v2, v3).

4.2.18. Definition. A square matrix Q ∈ Mn×n(F) is called orthogonal (often
assuming F = R, while most authors would say unitary in the case F = C) if
Q̄t · Q = In. In other words, Q ∈ GLn(F) is invertible and Q−1 = Q̄t. Here of
course Ā is the entrywise complex conjugation (Ā)ij = Aij and At is the transpose.
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4.2.19. Exercise. Show that Q is orthogonal (unitary) if and only if the columns
x1, . . . , xn of Q = [x1| · · · |xn] are orthonormal in Fn with the standard scalar
product.

4.2.20. Exercise. Let V be an inner product space of finite dimension n ≥ 1.
Let B be an orthonormal basis and C be another basis. Prove that the change-
of-coordinates matrix QB,C is orthogonal (unitary) if and only if C is also an
orthonormal basis of V .

As an application of Gram-Schmidt, we have a solution to Exercise 4.1.15.

4.2.21. Corollary. Let W ⊆ V be a subspace of a finite-dimensional inner product
space V . Then dim(W⊥) = dim(V )− dim(W ). And in particular (W⊥)⊥ = W .

Proof. We are really using Theorem 4.2.11 that tells us that V = W ⊕W⊥.
Except that in order to apply this theorem, we need an orthonormal basis of W ,
whose existence (Corollary 4.2.14) follows from Gram-Schmidt. Then dim(V ) =
dim(W ) + dim(W⊥) and we get the first statement. Consequently, dim((W⊥)⊥) =
dim(V ) − dim(W⊥) = dim(V ) − (dim(V ) − dim(W )) = dim(W ) and since W ⊆
(W⊥)⊥ is trivial those two subspaces having the same dimension must be equal. �

4.3. Adjoint of linear transformation

In this section, T : V → V ′ is a linear transformation between inner product
spaces. We want to understand the interplay between T and the inner products
on V and V ′. When we want to distinguish them we shall write 〈−,−〉 for the inner
product in V and 〈−,−〉′ for the inner product in V ′. There are several questions
we could ask about this topic, for instance, we could ask about 〈T (x1), T (x2)〉′ in
terms of 〈x1, x2〉. This relates with the topic of isometries (Definition 4.1.22). But
let us start with something simpler: We pick a vector x ∈ V and we consider the
inner product in V ′ between T (x) and a general vector y in V ′:

〈T (x), y〉′ = 〈x, ?〉.
The question is whether we can express this scalar 〈T (x), y〉′ as the inner product
in V of x and some vector (denoted ‘?’ above), probably depending on y. The
construction of this ‘?’ in terms of y is a linear construction that is called the
adjoint of T . Let us do it in the matrix case first.

4.3.1. Example. Let T = TA : V = Fp → V ′ = Fq be a linear transformation
given by A ∈ Mq×p(F). Consider the usual inner products on Fp and Fq, as in
Example 4.1.7. Let x ∈ Fp and y ∈ Fq. We compute

〈A · x, y〉 = (A · x)t · y by (4.1.8) in Fq

= xt ·At · y since (A1A2)t = At2A
t
1

= xt · Āt · y since ¯̄A = A

= 〈x, Āt · y〉 by (4.1.8) in Fp.

The adjoint A∗ ∈ Mn×m(F) of A is simply the above conjugate-transpose

A∗ = Āt.

We just proved that for all x ∈ Fp and x ∈ Fq

(4.3.2) 〈A · x , y〉 = 〈x , A∗ · y〉.



92 4. INNER PRODUCT SPACES

We can define T ∗ for any linear transformation.

4.3.3. Theorem. Let T : V → V ′ be a linear transformation between inner product
spaces of finite dimension.

(1) There exists a unique linear transformation T ∗ : V ′ → V such that

(4.3.4) 〈T (x), y〉′ = 〈x, T ∗(y)〉
for all x ∈ V and all y ∈ V ′.

(2) The matrix of T ∗ can be described as follows. If B is an orthonormal basis of V
and B′ is an orthonormal basis of V ′ and A = [T ]B′,B then

(4.3.5) [T ∗]B,B′ = A∗ = A
t
.

4.3.6. Definition. The unique linear transformation T ∗ : V ′ → V such that (4.3.4)
holds for all x ∈ V and all y ∈ V ′ is called the adjoint of T (with respect to the
given inner products on V and V ′).

Proof of Theorem 4.3.3. Let us show uniqueness in (1). Suppose that
T ∗(y) and T ?(y) are two vectors in V such that 〈T (x), y〉′ = 〈x, T ∗(y)〉 = 〈x, T ?(y)〉
for all x ∈ V . Then 〈x, T ∗(y) − T ?(y)〉 = 0 for all x ∈ V and therefore T ∗(y) −
T ?(y) ∈ V ⊥ = 0. So T ∗(y) = T ?(y) as claimed.

Let us now show that this T ∗ : V ′ → V exists. Part (2) predicts what the
matrix of T ∗ should be. So we prove existence and Part (2) simultaneously. Choose
some orthonormal bases B and B′ of V and V ′, using Corollary 4.2.14. Define a
linear transformation T ∗ : V ′ → V by the requirement that [T ∗]B,B′ = A∗ where
A = [T ]B′,B . This means that we have

(4.3.7) [T (x)]B′ = A · [x]B and [T ∗(y)]B = A∗ · [y]B′

for every x ∈ V and for every y ∈ V ′. (See Proposition 2.4.7 if necessary.) Using
that B and B′ are orthonormal bases, we can translate the inner product compu-
tations into the usual inner product of Fn via Proposition 4.2.8. Now compute for
every x ∈ V and y ∈ V ′ the following scalar

〈T (x), y〉′ = 〈[T (x)]B′ , [y]B′〉usual since B′ is orthonormal

= 〈A · [x]B , [y]B′〉usual by (4.3.7)

= 〈[x]B , A
∗ · [y]B′〉usual by Example 4.3.1

= 〈[x]B , [T
∗(y)]B〉usual by (4.3.7)

= 〈x , T ∗(y)〉 since B is orthonormal.

This proves the existence of T ∗ : V ′ → V such that (4.3.4) holds for all x ∈ V
and y ∈ V ′. This actually proves Part (2). Let us be careful: We only did it for some
choice of B and B′ but Part (2) claims that (4.3.5) should hold for all orthonormal
bases B and B′. However, once we know that T ∗ exists (which we did with the
help of some chosen orthonormal bases) then for any orthonormal bases B and B′

of V and V ′ we can define an auxiliary T ? : V ′ → V satisfying [T ?]B,B′ = [T ]
t

B′,B

as we did above and then prove exactly as above that 〈T (x), y〉′ = 〈x, T ?(y)〉 for
all x ∈ V and y ∈ V ′. By uniqueness, we must have T ? = T ∗ and therefore

[T ∗]B,B′ = [T ?]B,B′ = [T ]
t

B′,B as wanted. �

4.3.8. Corollary. Let T = TA : Fp → Fq be the linear transformation given by the
matrix A ∈ Mq×p(F). Then its adjoint T ∗ : Fq → Fp with respect to the standard
inner products is given by the adjoint matrix: (TA)∗ = TA∗ .



4.3. ADJOINT OF LINEAR TRANSFORMATION 93

Proof. The canonical bases are orthonormal bases for the standard inner
product and the matrix of TA in the canonical basis is A. �

4.3.9. Remark. Theorem 4.3.3 says that with respect to orthonormal bases the
matrix of the adjoint is the adjoint of the matrix

[T ∗]B,B′ =
(
[T ]B′,B)∗

when B is an orthonormal basis of V and B′ is an orthonormal basis of V ′. It is
totally false for general (non orthonormal) bases! We can complete Diagram (2.4.12)

V
∼

[−]B

//

T

��

Fp

TA

��

V ′
∼

[−]B′
// Fq

and

V
∼

[−]B

// Fp

V ′
∼

[−]B′
//

T∗

YY

Fq

TA∗

YY

The horizontal isometries come from the orthonormal bases. The linear transfor-
mation T ‘became’ multiplication by its matrix A = [T ]B′,B . Similarly, the linear
transformation T ∗ ‘becomes’ multiplication by a matrix [T ∗]B,B′ that we proved to
be the conjugate-transpose A∗ of A.

4.3.10. Exercise. Show that (S+T )∗ = S∗+T ∗ and that (c ·T )∗ = c̄ ·T ∗, for all
S, T : V → V ′ and c ∈ F.

4.3.11. Exercise. Show that R[X] is a real inner product space with scalar product

〈P,Q〉 =
∫ 1

−1
P (t) ·Q(t) dt. Let V and W be the subspaces of polynomials of degree

at most 2 and at most 1, respectively. Let T : V → W given by T (P ) = P ′.
Compute the adjoint T ∗ : W → V .

4.3.12. Exercise. Give the matrix of T ∗ in Exercise 4.3.11 with respect to the
canonical bases.

4.3.13. Exercise. Exact same question as in Exercise 4.3.11 but changing the

inner product to 〈P,Q〉 =
∫ 1

0
P (t) ·Q(t) dt.

4.3.14. Remark. Since (A∗)∗ = A for matrices (and since every finite-dimensional
inner product space admits an orthonormal basis) we have (T ∗)∗ = T . The double-
adjoint of T is T itself. As an exercise, try to prove this from the uniqueness
property of (T ∗)∗.

4.3.15. Exercise. Let T : V → V ′ and S : V ′ → V ′′ be linear transformations
between finite-dimensional inner product spaces. Give two proofs that (S ◦ T )∗ =
T ∗ ◦S∗, one via the matrix relation (A1 ·A2)∗ = A∗2 ·A∗1 and one via the uniqueness
property of the adjoint.

Given T : V → V ′ and its adjoint T ∗ : V ′ → V , we have four subspaces at our
disposal: Ker(T ), Im(T ∗) in V and Im(T ) and Ker(T ∗) in V ′. They are related via
orthogonals (Definition 4.1.14).

4.3.16. Proposition. Let V and V ′ be finite-dimensional inner product spaces.
Let T : V → V ′ be linear and T ∗ : V ′ → V its adjoint. Then

Ker(T ∗) = Im(T )⊥ and Im(T ∗) = Ker(T )⊥
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and therefore

Ker(T ) = Im(T ∗)⊥ and Im(T ) = Ker(T ∗)⊥.

Proof. Let y ∈ V ′. The condition y ∈ Im(T )⊥ is equivalent to saying that
〈z, y〉′ = 0 for all z ∈ Im(T ) =

{
T (x)

∣∣x ∈ V
}

. In other words, it means
〈T (x), y〉′ = 0 for all x ∈ V . By the defining property (4.3.4) of T ∗ the latter
means 〈x, T ∗(y)〉 = 0 for all x ∈ V . But this equivalent to T ∗(y) ∈ V ⊥ = 0, that is
y ∈ Ker(T ∗). In short, we have the left-hand equality below:

Ker(T ∗) = (Im(T ))⊥ and (Ker(T ∗))⊥ = Im(T ).

The right-hand equality is simply obtained by taking the orthogonal on both sides,
and using that (Im(T ))⊥⊥ = Im(T ) by Corollary 4.2.21. Now applying the above
two relations to the linear transformation T ∗ : V ′ → V we get

Ker(T ∗∗) = (Im(T ∗))⊥ and (Ker(T ∗∗))⊥ = Im(T ∗)

and we now use that T ∗∗ = T . We proved the four equalities of the statement. �

4.3.17. Corollary. With notation as in Proposition 4.3.16, we have

rank(T ∗) = rank(T ).

Proof. One can prove this in matrix form, since rank(A∗) = rank(A) but
we can use the above proposition too: We have rank(T ∗) = dim(Im(T ∗)) =
dim(Ker(T )⊥) = dim(V ) − dim(Ker(T )) by Corollary 4.2.21. By Rank-Nullity
Theorem 2.2.6, the latter is also rank(T ). �

4.3.18. Proposition. With notation as in Proposition 4.3.16, we have

Ker(T ∗ ◦ T ) = Ker(T ) and Im(T ∗ ◦ T ) = Im(T ∗).

for the operator T ∗ ◦ T on V and similarly for the operator T ◦ T ∗ : V ′ → V ′

Ker(T ◦ T ∗) = Ker(T ∗) and Im(T ◦ T ∗) = Im(T ).

Proof. The inclusion Ker(T ) ⊆ Ker(T ∗ ◦ T ) is trivial. Let x ∈ Ker(T ∗ ◦ T ).
This means that T ∗(T (x)) = 0. Hence 0 = 〈x, 0〉 = 〈x, T ∗(T (x))〉 = 〈T (x), T (x)〉′
by the defining property (4.3.4) of T ∗. The latter means ||T (x)||′ = 0, that is,
T (x) = 0. So x ∈ Ker(T ). This proves the non-trivial inclusion Ker(T ∗ ◦ T ) ⊆
Ker(T ) and thus equality. Applying this result to T ∗ : V ′ → V we get the formula
for Ker(T ◦ T ∗) since (T ∗)∗ = T . We then get the two formulas for the images by
taking orthogonal and using Proposition 4.3.16. In so doing, we also use (T ∗◦T )∗ =
T ∗ ◦ T ∗∗ = T ∗ ◦ T ; see Exercise 4.3.15. �

4.3.19. Corollary. With notation as in Proposition 4.3.16, we have rank(T ◦T ∗) =
rank(T ) = rank(T ∗) = rank(T ∗ ◦ T ). �

4.3.20. Corollary. Let A ∈ Mp×q(R).

(1) If rank(A) = p then A ·At ∈ Mp×p(F) is invertible.
(2) If rank(A) = q then At ·A ∈ Mq×q(F) is invertible.

Proof. We have rank(AAt) = rank(A) = p and AAt is a (p× p)-matrix. �
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4.3.21. Remark. The last corollary is useful in two numerical applications. One is
the ‘least square method’ which tries to approximate a solution to a linear system
A · x = b that has no solution (typically when p � q). The other one is the
‘minimal solution method’ which tries to find a solution with minimal norm among
the solutions of a linear system A·x = b that has infinitely many solutions (typically
when q � p).

4.3.22. Exercise. Let W ⊆ V be a T -invariant subspace of a finite-dimensional
inner product space V , for T : V → V a linear operator. Show that W⊥ is T ∗-
invariant.

4.4. Normal and self-adjoint operators

Continuing our review of Chapters 1–3 in the presence of an inner product, we
now turn to operators and their diagonalization.

Let (V, 〈−,−〉) be a finite-dimensional inner product space. In this section,
T : V → V is an operator on V . The remarkable property is the following one.

4.4.1. Definition. Let T : V → V be a linear operator on a finite-dimensional
inner product space. Recall its adjoint T ∗ : V → V from Definition 4.3.6. We say
that T is a normal operator if T ◦ T ∗ = T ∗ ◦ T .

4.4.2. Example. Of course, T = 0 and T = IdV are normal. Also, if T is normal
then so is c · T for any scalar c ∈ F. Indeed, (c T )∗ = c̄T ∗ and (c T )∗(c T ) =
c̄ T ∗ c T = c̄ c T ∗ T = c c̄ T T ∗ = c T c̄ T ∗ = (cT )(cT )∗.

4.4.3. Remark. We say that a matrix A ∈ Mn×n(F) is normal if A ·A∗ = A∗ ·A,
where we recall that the adjoint A∗ = Āt is simply the conjugate-transpose. This is
equivalent to the operator T = TA : Fn → Fn being normal for the standard inner
product. Indeed, TA∗ = (TA)∗ by Corollary 4.3.8.

4.4.4. Proposition. Let T : V → V and B be an orthonormal basis of V . Then
T is normal if and only if the matrix A = [T ]B is normal.

Proof. This is immediate once we know that [T ∗]B = A∗ because B is or-
thonormal; see Theorem 4.3.3 (2). �

4.4.5. Exercise. The sum of normal operators is not necessarily normal. Find
an example. However, if T is normal then T + λ IdV remains normal. Indeed,
(λ IdV )∗ = λ̄ IdV commutes with T and T ∗.

Here is an important class of examples of normal operators:

4.4.6. Definition. An operator T : V → V is self-adjoint if T ∗ = T .

4.4.7. Example. A real matrix A ∈ Mn×n(R) is self-adjoint for the standard inner
product if and only if A = At, i.e. A is symmetric.

4.4.8. Example. Note that a skew-symmetric matrix A ∈ Mn×n(R), that is, one
such that At = −A, is normal too: At ·A = −A2 = A ·At.

4.4.9. Exercise. Find a symmetric matrix A ∈ M2×2(C) that is not normal.
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We recall that the key result of Section 3.3 was Proposition 3.3.7 that told us,
in colloquial terms, that eigenspaces for different eigenvalues were ‘linearly indepen-
dent’ – do not use that terminology! Use the precise statement of Proposition 3.3.7.
For normal operators, we have actually a very clean formulation: Eigenspaces are
orthogonal! Let us do some preparation.

4.4.10. Corollary. Let T : V → V be a normal operator. Then Ker(T ) = Ker(T ∗).

Proof. Proposition 4.3.18 tells us that Ker(T ) = Ker(T ∗ ◦ T ) and Ker(T ∗) =
Ker(T ◦ T ∗). If T ◦ T ∗ = T ∗ ◦ T we are done. �

4.4.11. Exercise. Let T : V → V be a normal operator. Then Im(T ) = Im(T ∗).

4.4.12. Corollary. Let λ ∈ F be an eigenvalue of a normal operator T : V → V .
Then λ̄ is an eigenvalue of T ∗ and

Eλ(T ) = Eλ̄(T ∗).

In other words, x ∈ V is an eigenvector for T with eigenvalue λ if and only if x is
an eigenvector for T ∗ with eigenvalue λ̄.

Proof. Apply the previous corollary to the normal operator T − λ IdV . (We
saw in Exercise 4.4.5 that T − λ IdV is normal if T is.) Corollary 4.4.10 then reads

Ker(T − λ IdV ) = Ker(T ∗ − λ̄ IdV ).

Hence the left-hand side is non-zero (i.e. λ is an eigenvalue of T ) if and only if
the right-hand side is non-zero (i.e. λ̄ is an eigenvalue of T ∗). And then the above
kernels are the eigenspaces of the statement. �

We can then prove the critical statement (analogous to Proposition 3.3.7).

4.4.13. Theorem. Let T : V → V be a normal operator on a finite-dimensional
inner product space. Let λ 6= µ be two distinct eigenvalues of T . Then Eλ(T ) ⊥
Eµ(T ). In other words, every eigenvector for λ is orthogonal to any eigenvector
for µ.

Proof. Let x ∈ Eλ(T ) and y ∈ Eµ(T ). We want to show that 〈x, y〉 = 0. By
Corollary 4.4.12, we have y ∈ Eµ̄(T ∗). We compute in F:

λ · 〈x, y〉 = 〈λx, y〉 by (IPS 2)

= 〈T (x), y〉 since x ∈ Eλ(T )

= 〈x, T ∗(y)〉 by the key property (4.3.4) of T ∗

= 〈x, µ̄y〉 since y ∈ Eµ̄(T ∗)

= µ · 〈x, y〉 by (IPS 2’).

But λ 6= µ forces the other factor 〈x, y〉 to be zero. �

4.4.14. Example. Eigenspaces of a symmetric or skew-symmetric real matrix
A ∈ Mn×n(R) for different eigenvalues are orthogonal subspaces of Rn, with its
usual inner product.

4.4.15. Exercise. Let T : V → V be a linear operator on a finite-dimensional inner
product space over F = C. Show that T can be written uniquely as T = T1 + i · T2

for self-adjoint operators T1 and T2. Give explicit formulas for T1 and T2. Show
that T is normal if and only if T1 and T2 commute.
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4.5. Spectral Theorem

We can now prove a very useful result. As everywhere in this chapter, the field
F is R or C. Actually, the story will be slightly different for each case.

Let us isolate the property we are after, which is an improvement of being
diagonalizable (Definition 3.1.11).

4.5.1. Definition. We say that an operator T : V → V on a finite-dimensional
inner product space is orthogonally diagonalizable if V admits an orthonormal ba-
sis B such that [T ]B is diagonal, i.e. V admits an orthonormal basis consisting of
eigenvectors of T .

4.5.2. Remark. If T is orthogonally diagonalizable then choose an orthonormal
basis B such that [T ]B = D = diag(λ1, . . . , λn) is diagonal. Since B in an or-
thonormal basis, the matrix of the adjoint [T ∗] = D∗ is the adjoint of D, that
is, D∗ = diag(λ̄1, . . . , λ̄n). It is easy to verify that D∗D = DD∗ and therefore
T ∗T = TT ∗. So T is normal.

In short, orthogonally diagonalizable operators have to be normal.

Over the complex numbers the converse is true. To prove this, we can invoke
a very general result.

4.5.3. Lemma. Suppose that T : V → V has a completely split characteristic poly-
nomial (which is no condition for F = C). Then V admits an orthonormal basis B

in which the matrix of T is upper-triangular: [T ]B =

(
? ? ··· ?
0 ? ?...

...
...

...
0 ··· 0 ?

)
.

Proof. First note that V admits a basis C in which [T ]C is upper-triangular.
This follows immediately from the Jordan canonical form Theorem 3.6.4 (applied
to T ∗, so that we get upper -triangular for T ). But we can also verify this directly
by induction on n = dim(V ). Since the characteristic polynomial PT (X) ∈ F[X] is
completely split, T admits at least one eigenvalue λ ∈ F. We take v1 ∈ Eλ(T ) a
non-zero eigenvector. We can complete v1 6= 0 into a (temporary) basis {v1} ∪ C ′
of V for some complement C ′ = {v′2, . . . , v′n}. So far, the matrix of T in the
basis {v1} ∪ C ′ has the following form:

A :=
(
λ ?
0 A′

)
where A′ ∈ M(n−1)×(n−1)(F). We already used the argument that in this situation
PT (X) = PA(X) = (λ − X) · PA′(X) via Exercise D.2.8. Therefore PA′ is also
completely split. By induction hypothesis, V ′ = Span(v′2, . . . , v

′
n) has a(nother)

basis v2, . . . , vn in which TA′ is upper-triangular. In the new basis {v1, v2, . . . , vn}
of V , the matrix of T is now upper-triangular.

The fact that the matrix [T ]C in the basis C = {v1, . . . , vn} is upper-triangular
exactly means that all the subspaces Span(v1), Span(v1, v2), Span(v1, v2, v3), . . . are
all T -invariant, i.e.

T
(

Span(v1, . . . , vm)
)
⊆ Span(v1, . . . , vm)

for all m = 1, . . . , n.
To get the orthonormal basis B = {b1, . . . , bn} it suffices to apply Gram-

Schmidt to any basis C = {v1, . . . , vn} in which [T ]C is upper-triangular. Indeed,
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the Gram-Schmidt process is such that Span(b1, . . . , bm) = Span(v1, . . . , vm) for
all m = 1, . . . , n. Hence [T ]B is upper-triangular as well. �

We can now prove our main result.

4.5.4. Theorem (Complex Spectral Theorem). Let T : V → V be a linear operator
on a finite-dimensional inner product space over the field of complex numbers F =
C. Then T is normal if and only if it is orthogonally diagonalizable.

Proof. By Lemma 4.5.3, we have an orthonormal basis B such that A := [T ]B
is upper-triangular. On the other hand, since T is normal, we have A∗ ·A = A ·A∗
by Proposition 4.4.4. So it suffices to prove the following Claim:

If A ∈ Mn×n(C) is upper-triangular and normal then A is diagonal.

(The reader should appreciate this point: We do not need to change the orthonormal
basis B obtained from Lemma 4.5.3.) We prove this Claim by induction on n.
Compute the (1, 1)-entry of the (equal) matrix products A∗ ·A and A ·A∗:

n∑
j=1

(A∗)1,j ·Aj,1 = (A∗ ·A)1,1 = (A ·A∗)1,1 =

n∑
j=1

A1,j · (A∗)j,1.

Replacing (A∗)i,j = Aj,i by definition of A∗ = Āt and using that Aj,1 = 0 for j > 1
because A is upper-triangular and writing c · c̄ = |c|2 for any c ∈ C, we get:

|A1,1|2 =

n∑
j=1

Aj,1 ·Aj,1 =

n∑
j=1

A1,j ·A1,j =

n∑
j=1

|A1,j |2 = |A1,1|2 +

n∑
j=2

|A1,j |2.

We note that this is actually an equality of non-negative real numbers. Hence∑n
j=2 |A1,j |2 = 0 forces A1,j = 0 for all j = 2, . . . , n. Thus A looks as follows:

A =
(
A11 0

0 A′

)
for A′ ∈ M(n−1)×(n−1)(C). Compute A∗ =

(
A11 0

0 (A′)∗

)
. A direct computation of

the relation A · A∗ = A∗ · A in blocks gives us that A′ is also normal: (A′)∗ · A′ =
A′ · (A′)∗. By induction hypothesis, A′ is diagonal, hence so is A. �

4.5.5. Corollary. Let T : V → V be a linear operator on a finite-dimensional inner
product space over the complex numbers. Suppose that T is self-adjoint T = T ∗.
Then all eigenvalues of T are real and there exists an orthonormal basis of V such
that [T ]B is diagonal and real.

Proof. Since T is normal, Theorem 4.5.4 gives us an orthonormal basis B
such that [T ]B = D = diag(λ1, . . . , λn) is diagonal. But then D = [T ]B = [T ∗]B =
D∗ = D̄ since B is orthonormal and T ∗ = T . Thus λ̄i = λi for all i = 1 . . . , n. �

4.5.6. Corollary. Let A ∈ Mn×n(R) be a real matrix that is symmetric A = At.
Then its characteristic polynomial is completely split over R.

Proof. Consider T = TA : Cn → Cn the complex linear operator associated
to the same matrix (for the usual inner product on Cn). By Corollary 4.5.5 all
the eigenvalues of T are real, i.e. the real polynomial PA(X), that can be written
PA(X) = (−1)n(X − λ1) · · · (X − λn) for λ1, . . . , λn ∈ C, has only real roots:
all λi ∈ R. Hence PA(X) = (−1)n(X−λ1) · · · (X−λn) is split in R[X] already. �
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We can use the complex spectral theorem to prove the following version.

4.5.7. Theorem (Real Spectral Theorem). Let T : V → V be a linear operator
on a finite-dimensional inner product space over the field of real numbers F = R.
Then T is orthogonally diagonalizable if and only if T is self-adjoint T = T ∗. In
particular, the characteristic polynomial of a self-adjoint real operator is completely
split over R.

Proof. If T admits an orthonormal basis B in which [T ]B = D is diagonal,
say D = diag(λ1, . . . , λn) with real scalars λ1, . . . , λn then by Theorem 4.3.3 (2) we
have [T ∗]B = D∗ = D and therefore T ∗ = T . Hence T is self-adjoint.

Conversely, suppose that T = T ∗ is self-adjoint. Let C be any orthonormal basis
of V and A = [T ]C . By Theorem 4.3.3 (2) we have At = A∗ = [T ∗]C = [T ]C = A,
i.e. A is symmetric. By Corollary 4.5.6, the characteristic polynomial PT (X) =
PA(X) is completely split over R. We can now forget C and use Lemma 4.5.3.
There exists an orthonormal basis B of V such that D = [T ]B is upper-triangular.
But on the other hand Dt = D∗ = [T ∗]B = [T ]B = D and therefore D is symmetric.
But symmetric and upper-triangular means diagonal. �

4.5.8. Example. Recall our old friend A =
(

cos(α) − sin(α)
sin(α) cos(α)

)
∈ M2×2(R). We know

that if α is not an integral multiple of π, the matrix A has no real eigenvalue. In
particular it is not diagonalizable. A fortiori, it is not orthogonally diagonalizable
over the real numbers! And indeed, At 6= A unless sin(α) = 0 which is precisely
the α ∈

{
k · π

∣∣ k ∈ Z
}

that we excluded.

However, we have At = A−1. Indeed, At is the rotation of angle −α, or one can
directly verify At · A = I2 = A · At. And in particular, A is normal as a complex
matrix: A∗ · A = At · A = A · At = A · A∗. This means that A is orthogonally
diagonalizable over the complex numbers.

4.5.9. Exercise. Find an orthonormal basis of C2 in which the matrix of TA is

diagonal, where A =
(

cos(α) − sin(α)
sin(α) cos(α)

)
and α ∈ R. Write A = Q · D · Q∗ for Q

invertible (and unitary) and D diagonal.

Matrix forms of the spectral theorems.
We can apply the above results to the usual inner product spaces of Exam-

ple 4.1.7 and the linear transformation TA given by multiplication by a fixed square
matrix. Recall that (TA)∗ = TA∗ where A∗ = At.

In matrix form, Theorem 4.5.4 becomes:

4.5.10. Corollary. Let A ∈ Mn×n(C) be a complex matrix. The following are
equivalent:

(i) A is normal, i.e. A∗ ·A = A ·A∗.
(ii) A is orthogonally diagonalizable, i.e. there exists Q ∈ Mn×n(C) unitary (i.e.

invertible and Q−1 = Q∗) and D ∈ Mn×n(C) diagonal such that A = Q·D·Q∗.

In matrix form, Corollary 4.5.5 becomes:

4.5.11. Corollary. Let A ∈ Mn×n(C) be a complex matrix. The following are
equivalent:

(i) A is self-adjoint, i.e. A∗ = A.
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(ii) A is orthogonally diagonalizable with only real eigenvalues, i.e. there exists
Q ∈ Mn×n(C) unitary and D ∈ Mn×n(R) diagonal and real such that A =
Q ·D ·Q∗.

In matrix form, Theorem 4.5.7 becomes:

4.5.12. Corollary. Let A ∈ Mn×n(R) be a real matrix. The following are equiva-
lent:

(i) A is self-adjoint, i.e. At = A.
(ii) A is orthogonally diagonalizable, i.e. there exists Q ∈ Mn×n(R) orthogonal (i.e.

invertible and Q−1 = Qt) and D ∈ Mn×n(R) diagonal such that A = Q·D ·Qt.

4.5.13. Remark. In all cases, Condition (i) is very easy to verify. Also note that
a matrix can remain diagonalizable in the sense of Chapter 3 without being or-
thogonally diagonalizable. So the simple Condition (i) is not necessary for ordinary
diagonalization.

4.5.14. Remark. Once we verify Condition (i), we can find Q and D explicitly.
We find the eigenvalues λ1, . . . , λr, say all distinct, by splitting the characteristic
polynomial. We determine the eigenspaces Eλi(A) = Ker(A − λi · In) by solving
the linear system (A − λi · In) · x = 0. Once we have a basis of Eλi(A) we ap-
ply Gram-Schmidt (Theorem 4.2.13) to find an orthonormal basis Bi of Eλi(A).
Then, automatically, B = B1 ∪ · · · ∪Br is an orthonormal basis of Fn consisting of
eigenvectors. (This is of course only true under the assumption that we do know
that A is orthogonally diagonalizable.) Write the vectors B = {b1, . . . , bn} in a
matrix Q = [b1| · · · |bn]. This Q is orthogonal and A · Q = Q · D where D is the
diagonal matrix whose (i, i)-entry is the eigenvalue of bi as usual. This equation
A ·Q = Q ·D means A = Q ·D ·Q−1 = Q ·D ·Qt. In other words, Q = QC,B is the
change-of-coordinates matrix from the orthonormal basis of eigenvectors B to the
canonical basis C and [TA]B = QC,B · [TA]C ·QC,B = Q−1 ·A ·Q = Qt ·A ·Q = D
is diagonal.



APPENDIX A

Notations

The symbol ∈ means ‘element of’. For instance x ∈ A means that A is a set
and that x is an element of that set. Of course, if F is a field then a ∈ F means
that a is a scalar (an element of the set F); and if V is a vector space then x ∈ V
means that x is a vector. We do not reinvent new notation for ∈ in each case.

The symbol ⊆ means ‘is contained in’, for sets (or fields, vector spaces, etc).
So A ⊆ B simply means that A is a subset of the set B. We reserve A ⊂ B or
A ( B for proper subsets, when we insist that moreover A 6= B.

The symbol ∀ means “for all”. The symbol ∃ means “there exists”. (These
symbols might be used on the blackboard, for speed, but not in these notes.)

Let A ⊆ B be a subset. We write BrA =
{
b ∈ B

∣∣ b /∈ A} for its complement.
Functions are denoted by expressions of the following type

f : A // B

a
� // f(a).

This formula means that A and B are sets and that f is the data of a chosen element
f(a) in B for every a ∈ A. (Try to distinguish the notation → at the level of sets
and 7→ at the level of elements. This prevents confusion in tricky situations.)

The set notation
{

blah
∣∣blih

}
should be read as: the set of all elements of the

form ‘blah’ such that ‘blih’. The two most common uses are:
The set

{
x(a)

∣∣ a ∈ A} represents the collection of all elements of the (given)

form x(a), where a runs through the entire set A. For instance,
{
x+ y i

∣∣x, y ∈ R
}

consists of all expressions x+ y i for every possible choice of x and y in R.
The set

{
x ∈ B

∣∣P (x)
}

where P is a (given) property of x represents the
collection of all elements x in the (given) set B such that the property P (x) is true.
For instance,

{
x ∈ C

∣∣x2 = −1
}

is the set with two elements {i,−i}.
Formally, the latter is the correct one. Instead of the former

{
x(a)

∣∣ a ∈ A}
one should give a function x : A→ B and then our

{
x(a)

∣∣ a ∈ A} means the image

of that function, that is,
{
b ∈ B

∣∣ there exists a ∈ A such that x(a) = b
}

.

A.1.1. Notation. It is sometimes convenient to use the Kronecker symbol

δij =

{
1 if i = j
0 if i 6= j.
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APPENDIX B

Sets, functions, bijections

We use sets in the intuitive way, thinking of a set as a ‘collection’ of elements. (1)
As mentioned in Appendix A, we write a ∈ A to say that a is an element of A. We
write A ⊆ B to say that the set A is contained in the set B, i.e. that every element
of the first one is also an element of the second: ∀ a ∈ A, we have a ∈ B.

A function f : A → B assigns to every element a ∈ A an element f(a) in B.
The sets A and B are often called the source and target of f . We can compose
functions f : A→ B and g : B → C, when the target of the first is the source of the
second (here B), to define a new function g ◦ f : A→ C via (g ◦ f)(a) = g(f(a)) for
every a ∈ A. The identity is the function IdA : A → A defined by IdA(a) = a for
all a. We have f ◦ IdA = f and IdB ◦f = f for any f : A→ B.

Giving a function f : A → B is not saying that every b ∈ B is assigned to
some a. When the latter happens we say that f is surjective (or onto), i.e. when
for every b ∈ B there exists a ∈ A with f(a) = b.

More generally, the image of f is the subset Im(f) = f(A) =
{
f(a)

∣∣ a ∈ A} ={
b ∈ B

∣∣∃a ∈ A s.t. f(a) = b
}

of B. So f is surjective if and only if Im(f) = B.
Another misconception is to think that different elements a in A necessarily go

to different f(a) in B. This is a property of f , called being injective (or one-to-one),
i.e. for every a 6= a′ in A we have f(a) 6= f(a′) in B. Note that this is tautologically
equivalent to saying that: whenever f(a) = f(a′) we must have a = a′.

Injective and surjective are not each other’s contrary. The function f : R → R
given by f(x) = x2 is neither injective nor surjective.

A function f : A → B that is both injective and surjective is called bijective.
We also say that f is a bijection between A and B. (2)

If a function f : A → B is a bijection then for every b ∈ B there exists at
least one a ∈ A with f(a) = b by surjectivity, and there is at most one such a by
injectivity. So f bijective means that for each b ∈ B there exists a unique a ∈ A
such that f(a) = b. We call it the preimage of b and denote it f−1(b). In summary,
f−1(b) is the unique element of A such that f(f−1(b)) = b. This defines a new
function f−1 : B → A in the opposite direction of f such that f ◦ f−1 = IdB . For

1 Formally, one can invoke the Zermelo-Fraenkel Axioms, typically including the Axiom of
Choice. See for instance https://en.wikipedia.org/wiki/Zermelo-Fraenkel

2 It is relatively easy to remember those names, surjective, injective, bijective. The prefix

‘sur-’ means ‘over, above’. Being sur jective expresses the fact that A has enough elements to cover
the whole of B via f . The word ‘onto’ expresses the same idea. On the other hand, the prefix ‘in-’

refers here the idea of ‘inside, within’. Being injective expresses the fact that A might be thought
of as a subset of B via f . In particular, a subset A ⊆ B yields an injection A ↪→ B simply mapping

every a ∈ A to itself a ∈ B. (The expression ‘one-to-one’ here might be slightly misleading, as not
every ‘one’ in B needs to be reached by anyone and there never was any question that one a ∈ A
could have more than one image in B. So...) Finally bijective. Well, nowadays we are all used to

‘bi’ meaning ‘both’.
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each a ∈ A we also have f−1(f(a)) = a by applying the construction of f−1 to
b = f(a). In other words, we also have f−1 ◦ f = IdA.

One can easily verify that the existence of such a map backwards f ′ : B → A
with f ′ ◦ f = IdA and f ◦ f ′ = IdB is equivalent to f being a bijection. Indeed,
if f(a) = f(a′) then a = f ′(f(a)) = f ′(f(a′)) = a′, shows that f is injective and
b = f(f ′(b)) for any b ∈ B shows that f is surjective. In that case, f ′ = f−1

necessarily.

B.1.1. Exercise. (1) Show that if f : A→ B is a bijection then so is f−1 : B → A
and that (f−1)−1 = f .

(2) Let f : A → B and g : B → C be composable functions. Show that if two
among f, g, g ◦ f are bijections then so is the third. Give in each case a formula
for the inverse of this third function in terms of the inverses of the first two.



APPENDIX C

Techniques of proof

C.1. No!

Logic is a delicate matter, that deserves its own course. We use here only
rudimentary methods, that are sufficiently intuitive to warrant a light treatment.

One topic has however proved difficult for some students: The meaning of
the negation of a statement S. The pitfall comes from folksy logic and partisan
argumentation. Namely, do not use the ‘extreme opposite’ of S instead of its exact
negation. For instance, consider a subset A ⊆ N of integers and suppose that
your statement S(A) is “all numbers in A are even”. It depends on A. Say, if
A = {2, 4, 8} the statement is true. For A = {2, 5, 8} the statement is false. The
negation of statement S(A) is “at least one number in A is odd”. It is not “all
numbers in A are odd”. The negation of “Bob is a Democrat” is not “Bob is a
Republican”; it is “Bob is not a Democrat” (Bob could be an Independent, be
apolitical, or else). Jokes about mathematicians are written around this point.

So, how to construct the exact negation like a robot? The sticky point is what
to do with quantifiers, “for all” and “there exists”:

The negation of “for all x ∈ A, property P (x) is true” is “there exists x ∈ A
such that P (x) is not true”. The “for all” has become “there exists”.

And vice versa. The negation of “there exists x ∈ A, such that property P (x)
is true” is “for all x ∈ A property P (x) is not true”.

For instance, we saw above that (for some given subset A ⊆ N of integers)
the negation of “for all x ∈ A the number x is even” is “there exists some x ∈ A
such that the number x is not even (odd)”. Beware also that the ∈ A next to the
quantifier is not turned in /∈ A just because of the negative vibe.

C.1.1. Exercise. Let A,B be two subsets of larger set C. What is the exact
negation of “A is contained in B”? Verify your answer by applying negation-like-a-
robot to the statement “for all x ∈ A, we have x ∈ B” (expanded form of “A ⊆ B”).

C.2. Reasoning ab absurdo

In a situation where you wonder if some statement called S is true, you can
prove it by assuming that its exact negation is true and deriving a contradiction.
This means that our assumption was wrong, as it forced a contradiction. In other
words, the exact negation of S was wrong, so S was true. These are proofs by
contradiction, or ab absurdo, from the absurd. We will see many examples of this,
starting with the justification of the induction method below. (1)

1 The postmodernist may wonder why a contradiction is such a big deal. Technically, it is

not. And there is no proof that mathematics contains no contradiction! So far, none has appeared
though. If there was a contradiction in mathematics, absolutely all statements would be wrong

and, amusingly, all statements would be true as well. The world would be very boring.
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C.2.1. Example. If the square n2 of a number n ∈ Z is even then n is even. Indeed,
suppose ab absurdo that n is not even. Then it is odd, hence n = 2m+ 1 for some
m ∈ Z. Then n2 = 4m2 + 4m+ 1 = 2(2m2 + 2m) + 1 is odd, a contradiction with
the hypothesis that n2 was even. Something was wrong: The absurd assumption
that n would not be even. So indeed n is even, as claimed.

C.2.2. Example. Let us prove by contradiction that the real number
√

2 cannot be
a rational number. Suppose ab absurdo that we can write

√
2 = a

b for some a, b ∈ Z,
with b 6= 0 (and a 6= 0 of course). If a and b are both even, say a = 2a′ and b = 2b′

then we can cancel out a copy of 2 in this fraction a
b = a′

b′ and repeat. After

canceling out all possible copies of 2, we can assume that we have
√

2 = a
b where at

least one of a and b is odd (perhaps both). Then
√

2 = a
b gives b

√
2 = a. Raising

to the square we see that b2 · 2 = a2. Hence a2 is an even number. This forces a
to be even (Example C.2.1). So we can write a = 2a′ and our equation becomes
b2 · 2 = a2 = 4 · (a′)2. In particular b2 = 2 · (a′)2 is an even number. Hence b is even
(Example C.2.1 again). This is a contradiction since a and b cannot be both even.

Something was wrong: The absurd assumption that
√

2 was rational. Therefore√
2 is not rational. It is a number in R, not in Q.

An important logical trick is contraposition: If you know that property P im-
plies property Q then you also know that non-Q implies non-P. Indeed, you can
show that ab absurdo. Suppose that non-Q is true and let us show non-P is true.
If ab absurdo, this was false, that is, if non-(non-P)=P was true then Q would be
true too, by our assumption that P implies Q. In summary, non-Q would be true
and Q would be true too, a contradiction. What was absurd? The assumption that
non-P was false. So non-P is true.

Here is an example, in the style of Example C.2.2. We can show that every
even number n has an even square n2. (That is very easy: If n = 2m is even then
n2 = 4m2 = 2(2m2) is even.) In other words, P=(n is even) implies Q=(n2 is
even). It follows that non-Q=(n2 is odd) implies non-P=(n is odd). In words, if
the square of a number n2 is odd then the number n was odd.

C.3. Induction

A mathematical statement, let’s call it S(n), can depend on an integer n. For

instance, S(n) =“For any n ≥ 1, the sum 1+2+3+· · ·+n is equal to n(n+1)
2 . ” This

statement depends on n. We might know it for some n, not for others: You can do
it in your head for n = 4 but you would be hard-pressed to do it for n = 1080. (2)

One can prove such statements S(n) by induction on n in two steps:

(1) Starting point : We prove that the statement S(n0) is true for a particular
number n0.

(2) Induction step: Assuming that S(n − 1) is true for some number n ≥ n0 + 1,
we prove that S(n) is true as well.

2 Legend has it that Gauss found a proof, as a child. Call X = 1 + 2 + · · ·+ (n− 1) + n and

note that X = n+ (n− 1) + · · ·+ 2 + 1. Write one sum underneath the other and add ‘vertically’.
You get X+X = (1 +n) + (2 + (n−1)) + · · ·+ ((n−1) + 2) + (n+ 1) = (n+ 1) + · · ·+ (n+ 1) and

the latter sum has n terms. So 2 ·X = n · (n+ 1) hence the result. Darf ich jetzt spielen gehen?
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If we can do both of these steps, we can conclude that all the statements S(n) are
true for all n ≥ n0. The proof of (2) typically uses S(n − 1) somewhere. In that
setting, we call S(n− 1) the induction hypothesis.

Let us justify this. If ab absurdo there were some bad n ≥ n0 such that S(n)
was false, choose the smallest one. Call it nbad. So S(nbad) is false and nbad is the
smallest n ≥ n0 such that S(n) is false. By (1), nbad cannot be n0. So nbad ≥ n0+1.
And since nbad is the smallest bad n, we know that nbad − 1 is not bad, that is,
S(nbad − 1) is true. But then (2) tells us that S(nbad) is true, a contradiction.

Consider our example where S(n) was the statement that
∑n
k=1 k = n(n+1)

2 .
We claim that S(n) is true for all n ≥ 1. Here we want n0 = 1. We can check S(1)

that says
∑1
k=1 k = 1 = 1·2

2 . This gives us the starting point (1) for n0 = 1. Now,
let us prove the induction step (2). We suppose that for some n ≥ 2 we already
know that S(n−1) is true, and we want to prove S(n). To do this, we compute the
sum by pausing at n − 1 and then adding the last term at the end (we skip some
easy steps)

n∑
k=1

k =
( n−1∑
k=1

k
)

+ n =
(n− 1)((n− 1) + 1)

2
+ n =

n2 − n
2

+
2n

2
=
n(n+ 1)

2
.

Note that the second equality uses the induction hypothesis S(n − 1) to replace
1 + 2 + · · · + (n − 1) by the formula we are proving, but in the case where we are
allowed to! We conclude by induction on n, that S(n) is true for all n ≥ 1.

C.3.1. Exercise. Prove by induction on n that the sum of the first n squares

1 + 4 + 9 + · · ·+ n2 =
∑n
k=1 k2 is n(n+1)(2n+1)

6 .

C.3.2. Exercise. Let W ⊆ V be a subset of an F-vector space (take V = Rn if
you have not read Section 1.2 yet). Suppose that W is closed under addition, i.e.
for every x, y ∈ W we have x + y ∈ W . Show that W is closed under finite sums:
For every n ≥ 2 and every x1, . . . , xn ∈W we have x1 + · · ·+ xn ∈W .

C.3.3. Remark. After a while, one gets very used to induction and one tends
to omit the verification of the usually easy (1). This can lead to mistakes. Also,
in some problems, the induction proof only works for n0 quite large and one then
needs to check many small cases, between 1 and n0 for instance, if we want to have
a statement valid for all n ≥ 1. Here is a silly cautionary example.

C.3.4. Exercise. Consider the statement S(n) =“In a classroom with n students,
all students have the same name.” OK, let us test. For n = 0 it is correct but
borderline. So let us test with n = 1: Yes, a classroom with one student has this
property. Let us pass now to the induction argument. Take n large and suppose
we knew that in every classroom with n − 1 students all students have the same
name and let us consider a classroom with n students. Ask one student among the
n to leave the room. You then have a classroom with n− 1 students, all with same
name by induction hypothesis. Now the question is why is the name of the person
outside the room the same as the name of the other n−1? Simple! Ask that person
to come back in and ask another one to leave. Again, you are down to a classroom
with n − 1 students, all with the same name by induction hypothesis, so the first
person that went out has the same name as everybody else and we are done.

On the other hand, you might know that S(n) is false from experience. Do we
have a contradiction in mathematics (yippee!) or did we do something wrong?
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C.3.5. Remark. There are variants of the induction method, where you need
S(n−1) and S(n−2) to prove S(n). In that case, the starting point should contain
two consecutive verifications, S(n0) and S(n0 + 1), so that the induction step can
start with proving S(n0 + 2) from those two, etc. And so on, with three or more.

At the extreme, it is quite common to need S(m) for all smaller m, say, in the
range n0 ≤ m < n, as a kind of stronger induction hypothesis (more information)
in order to prove S(n). In that case, modified induction proceeds as follows:

(1’) Starting Point : Prove that S(n0) is true. (It’s the same as before.)
(2’) Modified Induction Step: Prove for every n ≥ n0 + 1 that if S(m) is true for

all n0 ≤ m < n then S(n) is true. (Before, we only used m = n− 1.)

The conclusion is that S(n) is true for all n ≥ n0 exactly as before. One can give the
same proof as above (hit the smallest bad n), or deduce this modified induction from
the first induction method for a new statement S′ defined as follows. Let S′(n) be
“S(m) is true for all n0 ≤ m ≤ n”. So S′(n0) = S(n0) and S′(n−1) is the modified
induction hypothesis where we assume all previous S(m). As S′(n) has only S(n)
as new information compared to S′(n−1) we know the induction step for S′ thanks
to (2’). By induction on n, we know that S′(n) is true for all n ≥ n0 which is the
same information as knowing S(n) is true for all n ≥ n0. It is not needed to make
this argument with S′ for this situation. But it is a useful mathematical trick to
make a statement ‘richer’ so that it passes each induction step more easily. Proving
more is sometimes simpler.



APPENDIX D

Reminder from Math 33A

[Prerequisites. Will TEX more if time permits.]

D.1. Polynomials

D.1.1. Definition. Recall that a root (or a zero) of a polynomial P (X) ∈ F[X] is
a scalar λ ∈ F such that P (λ) = 0.

We claim that

(D.1.2) P (λ) = 0 =⇒ P (X) = (X − λ) ·Q(X)

for a unique polynomial Q ∈ F[X]. Note that if P 6= 0 this forces deg(Q) =
deg(P )− 1. To see why (D.1.2) holds, one can use the usual division algorithm but
we can also use linear algebra.

Let λ ∈ F and d ≥ 1. Consider the F-vector spaces V and W and the linear
transformations T : V → F and S : W → V defined as follows:

T : V :=
{
P ∈ F[X]

∣∣ deg(P ) ≤ d
}

// F

P � // P (λ)

evaluation at λ, and multiplication by (X − λ)

S : W :=
{
Q ∈ F[X]

∣∣ deg(Q) ≤ d− 1
}

// V

Q
� // (X − λ) ·Q.

It is easy to verify that S and T are linear. The claim is that S restricts to an
isomorphism S : W

∼→ Ker(T ). Note that indeed T (S(Q)) = (λ − λ)Q(λ) = 0.
So at least Im(S) ⊆ Ker(T ). Since T (a0) = a0 for every a0 ∈ F we see that T is
surjective. By Rank-Nullity Theorem 2.2.6 it follows that dim(Ker(T )) = dim(V )−
1 = (d + 1) − 1 = d. On the other hand, S is clearly injective: If (X − λ) · Q = 0
then the leading term of Q cannot be non-zero: If Q = b0 + b1X + · · · + beX

e

with be 6= 0 then (X − λ)Q = beX
e+1+terms of lower degree, hence is non-zero.

By Rank-Nullity again, it follows that dim(Im(S)) = dimW = d. Therefore both
subspaces Im(S) ⊆ Ker(T ) have the same dimension d hence they are equal. In

summary, S is a bijection W
∼→ Im(S) = Ker(T ). This proves (D.1.2).

One can repeat (D.1.2): If Q(λ) = 0 as well then Q = (X − λ)R and P =
(X − λ)2R. Etc. Since deg(P ) > deg(Q) > deg(R) > · · · ≥ 0 this process must
stop after at most deg(P ) steps and we get (up to renaming Q the polynomial
where this stops): If P (λ) = 0 then there exists a unique polynomial Q such that

P (X) = (X − λ)m ·Q(X) with Q(λ) 6= 0.

The number m ≥ 1 is called the multiplicity of the root λ.

109



110 D. REMINDER FROM MATH 33A

Note also that if µ is another root of P , distinct from λ, then P = (X − λ)mQ
forces 0 = P (µ) = (λ−µ)mQ(µ) and therefore since (λ−µ) 6= 0 it forces Q(µ) = 0.
In other words, any other root of P would be one of Q. Repeating the above
decomposition for Q and µ, and proceeding by induction, we obtain the following
result. (Again, all this must stop as each step ‘chops off one degree’.)

D.1.3. Proposition. Let P ∈ F[X] be a polynomial of degree d ≥ 1. If λ1, . . . , λr
are distinct roots of P then

P (X) = (X − λ1)m1 · . . . · (X − λr)mr ·Q(X)

for unique integers m1, . . . ,mr ≥ 1 and a unique polynomial Q ∈ F[X] such that
Q(λi) 6= 0 for all i = 1, . . . , r. In particular, P has at most d = deg(P ) roots, even
counted with multiplicities:

∑r
i=1mi ≤ d. �

D.2. Review of determinants

The ‘correct’ definition of the determinant is not entirely easy. Let us give a
computational one instead. We start with a notation:

D.2.1. Notation. Let A ∈ Mn×n(F) be a square matrix of size n ≥ 2. Let
1 ≤ i, j ≤ n. We denote by A[i, j] ∈ M(n−1)×(n−1) the square matrix of size one
less obtained from A by removing the i-th row and the j-th column. (This is a very
‘local’ notation. Other authors will surely use other notation!)

D.2.2. Example. If A =
(

1 2 3
4 5 6
7 8 9

)
then A[1, 3] = ( 4 5

7 8 ) and A[2, 1] = ( 2 3
8 9 ).

D.2.3. Definition. Let A ∈ Mn×n(F) be a square matrix. The determinant of A
(by expansion along the first column) is defined by induction on n as follows:

n = 1: We define det([a11]) = a11.
n ≥ 2: Assume the determinant defined for all square matrices of size n− 1. Let

(D.2.4) det(A) =

n∑
i=1

(−1)i+1 ·Ai,1 · det(A[i, 1]).

The determinant is sometimes denoted |A| = det(A) but not in these notes.

D.2.5. Example. We have det ( a cb d ) = a · det(d)− b · det(c) = ad− bc.

D.2.6. Example. We have det
(

1 2 3
4 5 6
7 8 9

)
= 1 ·det ( 5 6

8 9 )−4 ·det ( 2 3
8 9 )+7 ·det ( 2 3

5 6 ) =

1 · (5 · 9− 8 · 6)− 4 · (2 · 9− 8 · 3) + 7 · (2 · 6− 5 · 3) = −3 + 24− 21 = 0.

D.2.7. Example. An easy induction on n shows that if A is upper-triangular
(Aij = 0 for all i > j) then det(A) = A11 det(A[1, 1]) = · · · = A11 · A22 · · ·Ann is
just the product of the diagonal elements. In particular det(A) = A11 ·A22 · · ·Ann
if A is diagonal. For instance, det(In) = 1.

D.2.8. Exercise. Let A =
(
A′ A′′

0 A′′′

)
be a (n × n)-matrix that is upper-triangular

by block, i.e. A′ ∈ Md×d(F) and A′′ ∈ Me×d(F) and A′′′ ∈ Me×e(F) where n = d+e.
Show by induction that det(A) = det(A′) · det(A′′′).

Let us gather some properties of this function det : Mn×n(F)→ F. To do this
we identify (n× n)-matrices with n column vectors in Fn.
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D.2.9. Theorem. There exists a function

δ : (Fn)n = Fn × · · · × Fn // F

(x1, · · · , xn) � // δ(x1, . . . , xn)

with the following properties:

(a) δ(e1, . . . , en) = 1.
(b) δ is multilinear, meaning that for all j = 1, . . . , n

δ(. . . , xj + x′j , . . . .) = δ(. . . , xj , . . . .) + δ(. . . , x′j , . . . .)

and

δ(. . . , c · xj , . . . .) = c · δ(. . . , xj , . . . .)
for all x1, . . . , xn, x

′
j ∈ Fn and c ∈ F, where all the vectors marked . . . and . . . .

are x1, . . . , xj−1 and xj+1, . . . , xn respectively in all these expressions. (1)
(c) δ is alternating, meaning that δ(x1, . . . , xn) = 0 if there exists i 6= j such that

xi = xj.

Moreover, this function δ is unique and is equal to δ(x1, . . . , xn) = det([x1| · · · |xn])
the determinant of the matrix whose columns are x1, . . . , xn.

D.2.10. Remark. Let us quickly observe that (b) and (c) imply that δ(x1, . . . , xn)
changes sign if we swap xi and xj for i 6= j. Let us prove this for i = 1 and
j = 2 but the proof is the same everywhere. Here is an argument we could have
used before as well. We use that δ(x, x, . . .) = 0 for x = x1 for x = x2 and for
x = x1 + x2. Using (b), it gives 0 = δ(x1 + x2, x1 + x2, . . .) = δ(x1, x1 + x2, . . .) +
δ(x2, x1 + x2, . . .) = δ(x1, x1, . . .) + δ(x1, x2, . . .) + δ(x2, x1, . . .) + δ(x2, x2, . . .) =
δ(x1, x2, . . .) + δ(x2, x1, . . .). Hence δ(x2, x1, . . .) = −δ(x1, x2 . . .).

Proof of Theorem D.2.9. It is an easy exercise to prove by induction on n
that det([x1| · · · |xn]) satisfies (a) and (b). The proof of (c) is a little more deli-
cate. One method of proof is as follows. First prove the Claim: det(x1| . . . |xn)
changes sign if you swap two columns. The proof of the claim can be made by in-
duction: When swapping the first two columns, it holds by expanding twice along
first columns. By induction, we get the Claim when we swap any two consecutive
columns xj and xj+1. Then by induction on j − i we get the Claim for swapping
xi and xj for j > i. Indeed, swapping (i, j) is like swapping (j− 1, j) then (i, j− 1)
then (j−1, j) again. Each of these 3 operations changes the determinant’s sign (by
induction hypothesis), hence so does the swap of (i, j). Once we have the Claim,
we get (c) by reducing to the case where i = 1 and j = 2. In that case, a double
column-expansion (i.e. apply the inductive Definition D.2.3 twice) gives (c).

Let us see the converse: If δ : (Fn)n → F satisfies (a), (b) and (c) then δ ‘is’ the
determinant. We proceed by induction on n and assume that every δ′ : (Fn−1)n−1 →
F that is 1 on the canonical basis, multilinear and alternating must be the (smaller)
determinant. Consider now δ : (Fn)n → F satisfying (a), (b) and (c). By linear-
ity in the first variable, we can compute δ(x1, x2, . . . , xn) as a linear combination

1In clear we want δ(x1, . . . , xj−1,xj + x′j, xj+1, . . . , xn) = δ(x1, . . . , xj−1,xj, xj+1, . . . , xn)+

δ(x1, . . . , xj−1,x
′
j, xj+1, . . . , xn) and δ(x1, . . . , xj−1, c · xj , xj+1, . . . , xn) = c · δ(x1, . . . , xn). In

other words, the expression δ(x1, . . . , xn) is linear in each xj separately, when all the other

x1, . . . , xj−1, xj+1, . . . , xn are kept constant, and this for each j = 1, . . . , n, one at a time.
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of δ(ei, x2, . . . , xn) for i = 1, . . . , n, namely, since x1 = x11e1 + · · ·+x1nen, we have

δ(x1, . . . , xn) =

n∑
i=1

x1i · δ(ei, x2, . . . , xn).

The point is that each δ(ei, x2, . . . , xn) ‘ignores’ the i-th entry of the column vectors
x2, . . . , xn. Let us see that for i = 1 and leave the other cases as an exercise.
We want to show that δ(e1, x2, . . . , xn) does not depend on the first entry of the
vectors x2, . . . , xn. Indeed, write x2 as x21 · e1 + x′2 where x′2 ∈ Span(e2, . . . , en)
has first entry zero. Then by (b) and (c), we see that

δ(e1,x2, x3, . . . , xn) = δ(e1, x21 e1 + x′2 , x3, . . . , xn)

= x21 · δ(e1, e1, x3, . . . , xn) + δ(e1,x
′
2, x3, . . . , xn) by (b)

= δ(e1, x
′
2, x3, . . . , xn) by (c).

Repeating this for each column (3, 4, . . . , n) we have proved that δ(e1, x2, . . . , xn) =
δ(e1, x

′
2, . . . , x

′
n) where each x′j = xj−xj1e1 has first entry zero. Now, the expression

δ(e1, x
′
2, . . . , x

′
n) is multilinear and alternating in x′2, . . . , x

′
n in Span(e2, . . . , en) ={ [ y1...

yn

]
∈ Fn

∣∣ y1 = 0
}

=
{  0

y2

...
yn

 ∈ Fn
∣∣ [ y2...

yn

]
∈ Fn−1

} ∼= Fn−1 and it is 1 when

x′i = ei for all i = 2, . . . , n. So by induction on n, we know that δ(e1, x
′
2, . . . , x

′
n) is

the determinant of the ((n−1)×(n−1))-matrix [x1| . . . |xn][1, 1]. For δ(ei, x2, . . . , xn)
a similar treatment and the swap of (i − 1) consecutive rows shows that we have
δ(ei, x2, . . . , xn) = (−1)i−1 det([x1| · · · |xn][i, 1]). In conclusion, δ(x1, . . . , xn) =
det([x1| · · · |xn]) as in the formula of Definition D.2.3. �

A consequence (of the proof) is:

D.2.11. Corollary. Let A ∈ Mn×n(F). Then det(A) = det(At).

Proof. As in the above proof, one can verify from the formulas of Defini-
tion D.2.3 that δ : (x1, . . . , xn) 7→ det

(
(x1| · · · |xn)t

)
satisfies (a), (b) and (c). (Here

again (c) is a little convoluted.) By uniqueness, this δ must be the determinant. �

We then have the following well-known rules for the determinant.

D.2.12. Proposition. Let A ∈ Mn×n(F).

(1) Let B be obtained from A by swapping two columns. Then det(B) = −det(A).
(2) Same as (1) but for swapping two rows.
(3) Let C be obtained from A by adding to the i-th column of A a scalar multiple

of the j-th column of A, for i 6= j. Then det(C) = det(A).
(4) Same as (3) but with rows: Adding a multiple of a row to another row does not

change the determinant.
(5) Let D be the matrix obtained from A by multiplying one column of A by a ∈ F.

Then det(D) = a · det(A).
(6) Same as (5) but with rows.
(7) For every a ∈ F, we have det(a ·A) = an · det(A).

Proof. We only prove the odd-numbered claimed. The even ones follow by
transposition (Corollary D.2.11) or can be proved similarly.

Part (1) is Remark D.2.10.
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Part (3) follows since δ(x, y+b ·x, . . .) = δ(x, y, . . .)+b ·δ(x, x, . . .) = δ(x, y, . . .)
since δ is alternating. And similarly if you use any two columns.

Part (5) is contained in multilinearity.
Finally, Part (7) is simply obtained by applying (5) n times. Indeed, a · A is

obtained by multiplying every of the n columns of A by the same constant a. �

It can be useful to expand the determinant along any row or column:

D.2.13. Proposition. Let A ∈ Mn×n(F).

(1) Let 1 ≤ j ≤ n. Then det(A) can be computed by ‘expansion along the j-th
column’:

det(A) =

n∑
i=1

(−1)i+jAij det(A[i, j]).

(2) Let 1 ≤ i ≤ n. Then det(A) can be computed by ‘expansion along the i-th row’:

det(A) =

n∑
j=1

(−1)i+jAij det(A[i, j]).

Proof. Let us name the columns of A as A = (x1| · · · |xn). Define B =
(xj |x1|x2| · · · |xj−1|xj+1| · · · |xn), obtained by moving the j-th column of A to the
front and pushing all columns from 1 to j − 1 by one notch to the right. Note
that our A can be recovered from this B by (j − 1) swaps of columns, putting
back the j-th column to its place: Swap first column and second, then second
and third, etc, until (j − 1)-th and j-th. By Proposition D.2.12 (1), we see that
det(A) = (−1)j−1 det(B). But if we now expand det(B) along the first column as
in Definition D.2.3, we get Part (1). (Alternatively, one can show that the formulas
of the statement satisfy Conditions (a), (b) and (c) of Theorem D.2.9.) �

D.2.14. Corollary. Let A ∈ Mn×n(F). Suppose that we apply any number of
steps of the Gauss-Jordan algorithm A  B to obtain another matrix B. Then
det(A) = 0 if and only if det(B) = 0.

Proof. Indeed, Gauss-Jordan is a combination of (2), (4) and (6) in Propo-
sition D.2.12 but only using non-zero a ∈ F in (6). Each step either changes the
determinant by a sign, keeps it unchanged, or multiplies it by a. In any case if it
was zero it stays zero and if it was non-zero it stays non-zero. �

Here is what det(A) determines:

D.2.15. Theorem. Let A ∈ Mn×n(F). Then A is invertible if and only if det(A)
is non-zero.

Proof. Recall that A is invertible if and only if it can be row-reduced A In
to the identity matrix by Gauss-Jordan. (Indeed, this is equivalent to Ker(A) = {0}
since it amounts to solving the system A · x = 0 and finding pivots in all rows.)
If this happens then det(A) 6= 0 by Corollary D.2.14, since det(In) = 1 6= 0.
Conversely, if det(A) 6= 0 then apply Gauss-Jordan A  B to get a row-reduced
echelon matrix B, in particular an upper-triangular matrix B with det(B) 6= 0 by
Corollary D.2.14; we see that B has to be diagonal (all pivots on the diagonal)
otherwise det(B) = 0 by Example D.2.7. Hence B = In and A is invertible. �

In fact, one can be more precise:
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D.2.16. Theorem. Let A,B ∈ Mn×n(F). Then det(A ·B) = det(A) · det(B).

Proof. Let us do four examples.
First if A is obtained from the identity matrix by swapping the i-th row and

the j-th row, for i 6= j. For instance, for i = 2 and j = 4 and n = 5, it would

be A =

(
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

)
. Note that A · B is simply the matrix B in which we swap

the i-th row and j-th column. By Proposition D.2.12 (2), det(AB) = − det(B) and
det(A) = −det(In) = −1 and therefore det(AB) = det(A) · det(B) in that case.

Second, suppose that A = Eij(b) for some i 6= j and b ∈ F is the identity
matrix, except for its (i, j)-entry where we have b instead of 0. In other words,
it is the matrix obtained from In by adding b times the j-th row to the i-th. By
Proposition D.2.12 (4) we have det(A) = det(In) = 1. Note also that A·B = Eij(b)·
B simply is the matrix B in which we add b times the j-th row to the i-th. So the
same proposition implies det(AB) = det(B) and again det(AB) = det(A) det(B)
in this case.

Thirdly, suppose that A = diag(1, . . . , 1, a, 1, . . . , 1) is almost the identity ma-
trix, except that we multiplied its i-th row (where the a appears) by a ∈ F.
Note that A · B is simply B but with the i-th row multiplied by a. By Propo-
sition D.2.12, we have det(A) = a · det(In) = a and det(AB) = adet(B). Again,
det(AB) = det(A) det(B) in that case.

In summary, at this stage, we have seen that every operation in Gauss-Jordan
can be obtain by left-multiplying by a suitable matrix A and that at least for there
matrices A we indeed have det(AB) = det(A) det(B), for all B.

Finally, the fourth example is when A is in row-reduced echelon form. Here
there are two possibilities. Either A = In and then surely det(AB) = det(B) =
det(A) det(B). Or A is not the identity, in which case its last row consists entirely
of zeros. But then so does the last row of AB and by expansion along the last row
we have det(AB) = 0 = 0 · det(B) = det(A) det(B) again.

Let us now take a general A. By Gauss-Jordan, we can row-reduce A A′ to
A′ that is row-reduced echelon, i.e. A′ is as in the fourth example above (the latter
one). We can ‘undo’ Gauss-Jordan, i.e. we can reconstruct A from A′ by multiplying
on the left by matrices of the first three kinds: A = A1 · · ·A` ·A′ where each Ai is a
matrix that swap rows, adds a multiple of a row to another or multiplies (or divides)
a row by a non-zero scalar. By the four examples of the first part of the proof, we
know that det(AB) = det(A1 · · ·A` ·A′ ·B) = det(A1) · · · det(A`)·det(A′)·det(B) =
det(A1 · · ·A` ·A′) · det(B) = det(A) det(B). �

D.2.17. Corollary. If Q ∈ GLn(F) is invertible then det(Q−1) = det(Q)−1.

Proof. Indeed, det(Q) det(Q−1) = det(Q ·Q−1) = det(In) = 1. �

D.2.18. Corollary. Similar matrices have the same determinant: If A = Q·B·Q−1

in Mn×n(F) with Q ∈ GLn(F) then det(A) = det(B).

Proof. We have by Theorem D.2.16 and the above corollary that det(A) =
det(Q ·B ·Q−1) = det(Q) · det(B) · det(Q)−1 = det(B) by commutativity in F. �
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D.2.19. Example. A 2× 2-matrix A =
(
a b
c d

)
is invertible if and only if det(A) =

ad− bc is non-zero. In that case, we have an explicit formula for the inverse:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Indeed a direct computation gives
(
d −b
−c a

)
·
(
a b
c d

)
=
(
ad−bc 0

0 ad−bc
)
.

There are explicit formulas for A−1 in the spirit of the above, due to Cramer.

D.2.20. Exercise. Let A ∈ Mn×n(F). Define the (adjugate) matrix Ã ∈ Mn×n(F)
by the formula

Ãij = (−1)i+j det(A[j, i])

where A[j, i] ∈ M(n−1)×(n−1) is as in Notation D.2.1. Beware that we remove the

j-th row and i-th column of A when we define the (i, j)-entry of Ã. (No misprint!)

(1) Prove that Ã · A = A · Ã = det(A) · In. [Hint: Prove that (A · Ã)ij is the
determinant of a certain matrix built out of A and depending on i and j.]

(2) Deduce that A is invertible if and only if det(A) 6= 0 (without using Theo-
rem D.2.15) and give an explicit formula for A−1.

Permutations. We can push the analysis of the determinant a little further
and produce a cleaner formula, if we speak of permutations.

D.2.21. Definition. Let n ∈ N, n ≥ 1. A permutation of n letters is simply a
bijection σ : {1, . . . , n} ∼→ {1, . . . , n} on the set with n elements {1, . . . , n}. We
write Sn =

{
σ : {1, . . . , n} → {1, . . . , n}

∣∣σ is bijective
}

for the set of all such

permutations. (2) Note that we can compose permutations, σ2 ◦ σ1, as we compose
functions: (σ2 ◦ σ1)(i) = σ2(σ1(i)) for all 1 ≤ i ≤ n.

D.2.22. Example. For all n we always have an identity id : {1, . . . , n} ∼→ {1, . . . , n},
which is as usual id(i) = i for all i ∈ {1, . . . , n}. It satisfies σ ◦ id = σ = id ◦σ for
all σ ∈ Sn. For n = 1 this is of course the only permutation S1 = {id}.

D.2.23. Example. For n = 2, we have S2 = {id, σ} where σ : {1, 2} ∼→ {1, 2} is
given by σ(1) = 2 and σ(2) = 1. We have σ ◦ σ = id.

D.2.24. Example. For n = 3, we have |S3| = 6. Beyond the identity, we can swap
two elements and leave the last untouched (in 3 different ways) and we can permute
cyclicly in two possible ways: Either σ : 1 7→ 2 7→ 3 7→ 1 which is denoted (123),
and τ : 1 7→ 3 7→ 2 7→ 1 which is denoted (132).

D.2.25. Example. For any n ≥ 2 and any two elements i 6= j of {1, . . . , n}, we
define the transposition (ij) in Sn to be the permutation of i and j that leaves the
other unchanged. Explicitly (ij) = σ where σ(i) = j and σ(j) = i and σ(k) = k for
all other k ∈ {1, . . . , n}r {i, j}. Note that (ij) ◦ (ij) = id.

D.2.26. Exercise. Show that every permutation is the composition of a finite
number of transpositions. [Hint: induction on

∣∣{i ∈ {1, . . . , n} | σ(i) 6= i}
∣∣.]

D.2.27. Remark. One can show in general that |Sn| = n! = n · (n− 1) · · · 2 · 1.

2 It is actually what we call a group, under composition.
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D.2.28. Notation. Let σ ∈ Sn be a permutation of n letters. We can associate
to σ a matrix Qσ ∈ Mn×n(F) called a permutation matrix and defined by

(Qσ)i,j = δi,σ(j) =

{
1 if i = σ(j)
0 otherwise.

We see that Qσ has only one non-zero entry in each row and each column: In the
j-th column, we put a 1 in the σ(j)-th row. In other words, Qσ is the matrix
obtained from the identity by permuting its rows as prescribed by σ.

This construction allows us to keep track of σ in matrix form. in other words,
σ 7→ Qσ is an injection Sn → Mn×n(F).

D.2.29. Example. We always have Qid = In.
For n = 2, we have Q(12) = ( 0 1

1 0 ).
For n = 3 (Example D.2.24) the 6 permutation matrices that we obtain are(

1 0 0
0 1 0
0 0 1

)
,
(

0 1 0
1 0 0
0 0 1

)
,
(

1 0 0
0 0 1
0 1 0

)
,
(

0 0 1
0 1 0
1 0 0

)
,
(

0 0 1
1 0 0
0 1 0

)
,
(

0 1 0
0 0 1
1 0 0

)
.

They are respectively Qid, Q(12), Q(23), Q(13), Q(123) and Q(132).

D.2.30. Lemma. We have Qσ◦τ = Qσ · Qτ for every σ, τ ∈ Sn. In particular
every Qσ ∈ GLn(F) is invertible and (Qσ)−1 = Qσ−1 .

Proof. Let us show that both matrices Qσ◦τ and Qσ · Qτ have the same
(i, k)-entry, for all i, k ∈ {1, . . . , n}. We have (Qσ ·Qτ )ik =

∑n
j=1(Qσ)ij · (Qτ )jk =∑n

j=1 δi,σ(j) · δj,τ(k). Most terms in this sum as zero. If all of them are then the
sum is zero. Let us see when the sum is not zero. For that we need to find j
between 1 and n such that j = τ(k) (otherwise δj,τ(k) = 0) and also such that
i = σ(j) (otherwise δi,σ(j) = 0). In other words, this (Qσ ·Qτ )ik = 0 is zero unless
i = σ(j) where j = τ(k), meaning unless i = σ(τ(k)) = (σ ◦ τ)(k), in which case
the sum is 1 since there is only one j that fits the bill (j = τ(k)). This is exactly
the (i, k)-entry of (Qσ◦τ ). The rest follows since then Qσ ·Qσ−1 = Qid = In. �

D.2.31. Definition. The signature of a permutation σ ∈ Sn is defined as sgn(σ) =
det(Qσ). This is a somewhat artificial definition.

One should define the signature without invoking matrices, or determinants. It
would be as follows (but the proof would be longer):

D.2.32. Proposition. Let n ≥ 1.

(1) We have sgn(σ) = ±1 for all σ ∈ Sn.
(2) We have sgn(σ ◦ τ) = sgn(σ) · sgn(τ) for all σ, τ ∈ Sn.
(3) Transposition have signature −1: For every i 6= j, we have sgn((ij)) = −1.
(4) If σ is the composition of m transpositions as in (3) – and all permutations are

like that for some m – then sgn(σ) = (−1)m.

Proof. Part (2) follows from Qσ◦τ = Qσ · Qτ (Lemma D.2.30) and Theo-
rem D.2.16. For Part (3) note that Q(ij) is obtained from the identity matrix by
swapping two rows: the i-th and the j-th. Hence det(Q(ij)) = −1 by Proposi-
tion D.2.12 (2). Part (4) follows. And Part (1) is less precise than (4). �

D.2.33. Example. Returning to S3 = {id, (12), (23), (13), (123), (132)}. Then
(12) ◦ (23) = (123) and (12) ◦ (13) = (132) and we see that (12), (13), (23) have
signature −1 and the other three have signature 1.
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We can use permutations and signatures to give a non-recursive formula for
the determinant. Repeating the expansion-along-a-column definition, we see that
det(A) is a sum of products of entries of A. More precisely, since we remove the
i-th row and j-th column ‘once we have used Aij ’ we see that det(A) is the sum of
al possible products of n entries of A, where we always take exactly one entry in
each row and each column. And there are signs...

D.2.34. Theorem. Let A ∈ Mn×n(F). Then we have

det(A) =
∑
σ∈Sn

(
sgn(σ) ·

n∏
i=1

Ai,σ(i)

)
.

Proof. One can easily verify that the formula given in the statement (as a
function of the columns of A) is multilinear and takes the value 1 on the canonical
basis, as in (a) and (b) of Theorem D.2.9. It only remains to check that (c) holds,
i.e. that it is an alternating formula in the columns of A. Suppose that the j-th
and the k-th columns of A coincide, say for j < k. Hence Ai,σ(i) = Ai,τ(i) whenever
τ = (jk)σ: Permuting the entries of the j-th column and of the k-th column does
not change A. In other words, the expression

n∏
i=1

Ai,σ(i) and

n∏
i=1

Ai,τ(i)

are equal if τ = (jk)σ. But now, partition Sn into two disjoint subsets Sn = TntUn
where Tn =

{
σ ∈ Sn

∣∣σ−1(j) < σ−1(k)
}

and Un =
{
τ ∈ Sn

∣∣ τ−1(j) > τ−1(k)
}

.
(The preimages of j 6= k cannot be equal. Hence one is greater than the other.)

Note also that we have a bijection Tn
∼→ Un given by σ 7→ (jk) ◦ σ. The inverse of

this bijection is given by the same formula (!) since (jk)2 = id. Under this bijection
the signature changes sign since sgn((jk)) = −1. Let us also abbreviate

b(σ) := sgn(σ) ·
n∏
i=1

Ai,σ(i).

The theorem claims that det(A) =
∑
σ∈Sn b(σ). So far we have seen that Sn = Tnt

Un, that σ 7→ (jk) ◦σ is a bijection between Tn and Un and that b((jk)σ) = −b(σ).
We have all ingredients to conclude∑

σ∈Sn b(σ) =
∑
σ∈Tn b(σ) +

∑
τ∈Un b(τ) since Sn = Tn t Un

=
∑
σ∈Tn b(σ) +

∑
σ∈Tn b((jk)σ) using our bijection Tn

∼→ Un

=
∑
σ∈Tn b(σ) +

∑
σ∈Tn −b(σ) by our assumption on A

=
∑
σ∈Tn

(
b(σ)− b(σ)

)
= 0.

Thus the formula of the statement has all properties that uniquely characterizes
the determinant and we conclude by Theorem D.2.9. �
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