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Problem 1.
Consider an n × m matrix A with rank(A) = m, and a singular value decomposition

A = UΣV T . Show that the least-squares solution of a linear system A~x = ~b can be
written as

~x∗ =
~b · ~u1
σ1

~v1 + · · ·+
~b · ~um
σm

~vm

Solution: For some vector ~x∗ to be a least-squares solution it just needs to satisfy
A~x∗ = projim(A)(~b). Since ~u1, . . . , ~un are an orthonormal basis of Rn then

A~x∗ = A

(
~b · ~u1
σ1

~v1 + · · ·+
~b · ~um
σm

~vm

)
= ~b · ~u1

A~v1
σ1

+ · · ·+~b · ~um
A ~vm
σm

= (~b · ~u1) ~u1 + · · ·+ (~b · ~um) ~um = projim(A)(~b)

because ~u1, . . . , ~um is an orthonormal basis of im(A). Thus ~x∗ is a least-squares
solution, as desired.

Problem 2.
Consider the 4× 2 matrix

A =
1

10


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




2 0
0 1
0 0
0 0

[3 −4
4 3

]
.

Find the least-squares solution of the linear system

A~x = ~b where ~b =


1
2
3
4

 .

Solution: We can read off the decomposition of A the following

~u1 =
1

2


1
1
1
1

 , ~u2 =
1

2


1
1
−1
−1

 , ~v1 =
1

5

[
3
−4

]
, ~v2 =

1

5

[
−4
3

]
, σ1 = 2, σ2 = 1

so by the above we find

~x∗ =
~b · ~u1
σ1

~v1 +
~b · ~u2
σ2

~v2 =

[
−1/10
−16/5

]
.



Problem 3.

(a) Explain how any square matrix A can be written as A = QS, where Q is orthogonal
and S is symmetric positive semidefinite. This is called the polar decomposition of
A.

(b) Is it possible to write A = S1Q1, where Q1 is orthogonal and S1 is symmetric
positive semidefinite?

Solution:

(a) Let A = UΣV T be the singular value decomposition of A. Set Q = UV T and
S = V ΣV T , we can rewrite

A = UΣV T = UV TV ΣV T = QS

where Q is orthogonal because it is the product of orthogonal matrices, and S
is symmetric since

ST = (V ΣV T )T = (V T )TΣTV T = V ΣV T

because Σ only has non zero entries in its diagonal. Moreover, since S is similar
to Σ then they have the same eigenvalues, and the eigenvalues of Σ are its
diagonal entries, which are all positive or zero. Thus S is positive semidefinite.

(b) Yes. Set S1 = UΣUT and Q1 = UV T and rewrite

A = UΣV T = UΣUTUV T = S1Q1

where, as we just saw, Q1 and S1 are orthogonal and symmetric positive
semidefinite.

Problem 4.
Find a polar decomposition A = QS for

A =

[
6 2
−7 6

]
.

Draw a sketch showing S(C) and A(C) = Q(S(C)), where C is the unit circle centered
at the origin.

Solution: We compute its singular value decomposition and obtain

A =

[
6 2
−7 6

]
=

(
1√
5

[
1 2
−2 1

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
= UΣV T



so

Q =

(
1√
5

[
1 2
−2 1

])(
1√
5

[
2 −1
1 2

])
=

1

5

[
4 3
−3 4

]
,

S =

(
1√
5

[
2 1
−1 2

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
=

[
9 −2
−2 6

]
,

and

A =

(
1

5

[
4 3
−3 4

])[
9 −2
−2 6

]
.

Problem 5.
Show that a singular value decomposition A = UΣV T can be written as

A = σ1 ~u1 ~v1
T + · · ·+ σr ~ur ~vr

T .

Solution: We can rewrite the singular value decomposition of A as

A = UΣV T =

 | |
~u1 · · · ~un
| |




σ1
. . .

σr
0

. . .

0


— ~v1 —

...
— ~vm —



=

 | |
~u1 · · · ~un
| |




— σ1 ~v1 —
...

— σr ~vr —
0
...
0


= σ1

 |~u1
|

 [— ~v1 —
]

+ · · ·+ σ1

 |~u1
|

 [— ~v1 —
]

= σ1 ~u1 ~v1
T + · · ·+ σr ~ur ~vr

T

giving the desired decomposition.

Problem 6.
Find a decomposition A = σ1 ~u1 ~v1

T + σ2 ~u2 ~v2
T for

A =

[
6 2
−7 6

]
.



Solution: We compute its singular value decomposition and obtain

A =

[
6 2
−7 6

]
=

(
1√
5

[
1 2
−2 1

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
= UΣV T .

We can read off this decomposition the following

~u1 =
1√
5

[
1
−2

]
, ~u2 =

1√
5

[
2
1

]
, ~v1 =

1√
5

[
2
−1

]
, ~v2 =

1√
5

[
1
2

]
, σ1 = 10, σ2 = 5

so

A = 10

(
1√
5

[
1
−2

])(
1√
5

[
2 −1

])
+ 10

(
1√
5

[
2
1

])(
1√
5

[
1 2

])
=

[
8 −2
−8 4

]
+

[
2 4
1 2

]
.


