Math 33A
Linear Algebra and Applications

Discussion for March 7-11, 2022



Problem 1.
Consider an n x m matrix A with rank(A) = m, and a singular value decomposition
A = UXVT. Show that the least-squares solution of a linear system AZ = b can be
written as . o
7= b.ulv_i+'--+b.umv;
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Solution: For some vector ©* to be a least-squares solution it just needs to satisfy
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AT = Projiy,(ay(b). Since i, ..., u; are an orthonormal basis of R™ then
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because ui,...,u, is an orthonormal basis of im(A). Thus &* is a least-squares
solution, as desired.

Problem 2.
Consider the 4 x 2 matrix
11 1 1 2 0]
A_ill—l—l 0 1113 —4
101 -1 1 —=1]1{0 0| |4 3]

1 -1 -1 1 0 0]

Find the least-squares solution of the linear system
.
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AZ =b where b= 3
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Solution: We can read off the decomposition of A the following
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so by the above we find




Problem 3.

(a) Explain how any square matrix A can be written as A = S, where @ is orthogonal
and S is symmetric positive semidefinite. This is called the polar decomposition of

A.

(b) Is it possible to write A = S;Q1, where @) is orthogonal and S; is symmetric
positive semidefinite?

Solution:

(a) Let A= UXVT be the singular value decomposition of A. Set Q@ = UV’ and
S =VXVT, we can rewrite

A=UxVvT =uvTvev? = QS

where () is orthogonal because it is the product of orthogonal matrices, and S
is symmetric since

ST = (vxvhT = (vHIETvT = vev?

because ¥ only has non zero entries in its diagonal. Moreover, since S is similar
to X then they have the same eigenvalues, and the eigenvalues of ¥ are its
diagonal entries, which are all positive or zero. Thus S is positive semidefinite.

(b) Yes. Set S; = UXUT and Q; = UVT and rewrite
A=UsV"' =UsU"UV" = 51,

where, as we just saw, (J; and S; are orthogonal and symmetric positive
semidefinite.

Problem 4.
Find a polar decomposition A = Q)S for
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Draw a sketch showing S(C) and A(C) = Q(S(C)), where C is the unit circle centered

at the origin.

Solution: We compute its singular value decomposition and obtain
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Problem 5.

Show that a singular value decomposition A = UXV7T can be written as
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giving the desired decomposition.

Solution: We can rewrite the singular value decomposition of A as

oy

- ST - o
—] = ouvy + -+ U,
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Problem 6.

. o ~ T - ST
Find a decomposition A = oquj07" + oounvy” for
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Solution: We compute its singular value decomposition and obtain
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We can read off this decomposition the following

uﬁ—i{l] u_'—i{ﬂ ?f—i{z} vﬁ—i{l} 01=10,09=5
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