> Math 33A

Linear Algebra and Applications
Discussion for January 10-14, 2022

Problem 1.

Show that if T is a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then

$$
T\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} T\left(\overrightarrow{e_{1}}\right)+\cdots+x_{m} T\left(\overrightarrow{e_{m}}\right)
$$

where $\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{m}}$ are the standard vectors in \mathbb{R}^{m}.

Problem 2.

Describe all linear transformations from \mathbb{R} to \mathbb{R}. What do their graphs look like?

Problem 3.

Describe all linear transformations from \mathbb{R}^{2} to \mathbb{R}. What do their graphs look like?

Problem 4.

Consider two linear transformations $\vec{y}=T(\vec{x})$ and $\vec{z}=L(\vec{y})$, where T goes from \mathbb{R}^{m} to \mathbb{R}^{p} and L goes from \mathbb{R}^{p} to \mathbb{R}^{n}. Is the transformation $\vec{z}=L(T(\vec{x}))$ linear as well?

Problem 5.

Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] .
$$

Find the matrix of the linear transformation $T(\vec{x})=B(A \vec{x})$.

