
Math 33A
Linear Algebra and Applications

Discussion for January 31-February 4, 2022



Problem 1.
Here is an infinite-dimensional version of Euclidean space: In the space of all infinite
sequences, consider the subspace `2 of square-summable sequences (namely, those se-
quences (x1, x2, . . . ) for which the infinite series x21 + x22 + · · · converges). For x and y
in `2, we define

||~x|| =
√
x21 + x22 + · · · and ~x · ~y = x1y1 + x2y2 + · · · .

A preliminary question is, why do ||~x|| and ~x · ~y make sense, that is, why are they finite
real numbers?

(a) Check that ~x = (1, 1/2, 1/4, 1/8, 1/16, . . . ) is in `2, and find ||~x||. Recall the formula
for the geometric series: 1 + a+ a2 + a3 + · · · = 1/(1− a) if −1 < a < 1.

(b) Find the angle between (1, 0, 0, 0, . . . ) and (1, 1/2, 1/4, 1/8, . . . ).

(c) Give an example of a sequence (x1, x2, . . . ) that converges to 0 (limn→∞ xn = 0)
but does not belong to `2.

(d) Let L be the subspace of `2 spanned by (1, 1/2, 1/4, 1/8, . . . ). Find the orthogonal
projection of (1, 0, 0, 0, . . . ) onto L.

The Hilbert space `2 was initially used mostly in physics: Werner Heisenberg’s formu-
lation of quantum mechanics is in terms of `2. Today, this space is used in many other
applications, including economics. See, for example, the work of the economist Andreu
Mas-Colell of the University of Barcelona.

Solution:

(a) Using the formula for the geometric series ||~x||2 = 4/3 so ||~x|| = 2/
√

3.

(b) Set ~x = (1, 0, 0, 0, . . . ) and ~y = (1, 1/2, 1/4, 1/8, . . . ), then

θ = arccos
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(c) Consider ~x = (1, 1/
√
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4, . . . ), then
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which diverges since the harmonic series
∑∞
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1
n

diverges.



(d) Let ~x = (1, 0, 0, 0, . . . ) and ~y = (1, 1/2, 1/4, 1/8, . . . ), we want the orthogonal
projection of ~x onto L = span(~y). For this, we first find a vector of length one
in the direction of ~y, namely

~u =
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and now we compute
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Problem 2.
Give an algebraic proof for the triangle inequality

||~v + ~w|| ≤ ||~v||+ ||~w||.

Draw a sketch.

Solution: Note that

||~v + ~w||2 = (~v + ~w) · (~v + ~w) = ~v · ~v + ~v · ~w + ~w · ~v + ~w · ~w =

= ||~v||2 + 2(~v · ~w) + ||~w||2 ≤ ||~v||2 + 2(||~v|| · ||~w||) + ||~w||2 = (||~v||+ ||~w||)2

where we have used the Cauchy-Schwarz inequality. Thus ||~v + ~w|| ≤ ||~v||+ ||~w||.

Problem 3.

(a) Consider a vector ~v in Rn, and a scalar k. Show that ||k~v|| = |k|||~v||.
(b) Show that if ~v is a nonzero vector in Rn, then ~u = ~v

||~v|| is a unit vector.

Solution:

(a) Note that
||k~v||2 = (k~v) · (k~v) = k2(~v · ~v) = k2||~v||2

and thus taking square roots ||k~v|| = |k|||~v|| since |k| =
√
k2.

(b) We compute

||~u|| =
∣∣∣∣∣∣∣∣ ~v||~v||

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1

||~v||
~v

∣∣∣∣∣∣∣∣ =
1

||~v||
||~v|| = 1

using what we just proved.



Problem 4.
Can you find a line L in Rn and a vector ~x in Rn such that ~x · projL~x is negative?
Explain, arguing algebraically.

Solution: No. Let ~x = ~x|| + ~x⊥ be the decomposition of ~x into the components
parallel and perpendicular to L. In particular ~x|| = projL~x and ~x⊥ · ~x|| = 0. Now

~x · projL~x = (~x|| + ~x⊥) · ~x|| = ~x|| · ~x|| + ~x⊥ · ~x|| = ||~x||||2 ≥ 0.


