Math 33A Linear Algebra and Applications

Discussion for February 7-11, 2022

Problem 1.

The following is one way to define the quaternions, discovered in 1843 by the Irish mathematician Sir W. R. Hamilton. Consider the set H of all 4×4 matrices M of the form

$$M = \begin{bmatrix} p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \\ s & r & -q & p \end{bmatrix}$$

where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned form as

$$M = \begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix}$$

where A and B are rotation-scaling matrices.

- (a) Show that H is closed under addition: If M and N are in H, then so is M + N.
- (b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary scalar, then kM is in H.
- (c) The above show that H is a subspace of the linear space $\mathbb{R}^{4\times 4}$. Find a basis of H, and thus determine the dimension of H.
- (d) Show that H is closed under multiplication: If M and N are in H, then so is MN.
- (e) Show that if M is in H, then so is M^T .
- (f) For a matrix M in H, compute $M^T M$.
- (g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M^{-1} necessarily in H as well?
- (h) If M and N are in H, does the equation MN = NM always hold?

Solution:

(a) When we add two matrices in H we obtain another matrix in H

$$\begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix} + \begin{bmatrix} C & -D^T \\ D & C^T \end{bmatrix} = \begin{bmatrix} (A+C) & -(B+D)^T \\ (B+D) & (A+C)^T \end{bmatrix}$$

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

$$k \begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix} = \begin{bmatrix} (kA) & -(kB)^T \\ (kB) & (kA)^T \end{bmatrix}$$

(c) The general element of H has four arbitrary constants, so H has dimension 4. A basis is

[1	0	0	0		0	-1	0	0]		0	0	-1	0		0	0	0	-1^{-1}	
0	1	0	0		1	0	0	0		0	0	0	-1		0	0	1	0	
0	0	1	0	,	0	0	0	1	,	1	0	0	0	,	0	-1	0	0	•
0	0	0	1		0	0	$ \begin{array}{c} 0 \\ 0 \\ -1 \end{array} $	0		0	1	0	0		1	0	0	0	

(d) When we multiply two matrices in H we obtain another matrix in H

$$\begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix} \begin{bmatrix} C & -D^T \\ D & C^T \end{bmatrix} = \begin{bmatrix} (AC - B^TD) & -(BC + A^TD)^T \\ (BC + A^TD) & (AC - B^TD)^T \end{bmatrix}$$

where it is useful to notice that since all A, B, C, D are rotation-scaling matrices, they commute with each other.

(e) When we transpose a matrix in H we obtain another matrix in H

$$\begin{bmatrix} A & -B^T \\ B & A^T \end{bmatrix}^T = \begin{bmatrix} (A^T) & -(-B)^T \\ (-B) & (A^T)^T \end{bmatrix}.$$

(f) We expand $M^T M$ as

$$\begin{bmatrix} p & q & r & s \\ -q & p & -s & r \\ -r & s & p & -q \\ -s & -r & q & p \end{bmatrix} \begin{bmatrix} p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \\ s & r & -q & p \end{bmatrix} = (p^2 + q^2 + r^2 + s^2) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(g) If $M \neq 0$ then $p^2 + q^2 + r^2 + s^2 \neq 0$ so by the above

$$M^{T}M = (p^{2} + q^{2} + r^{2} + s^{2}) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and thus

$$\left(\frac{1}{(p^2+q^2+r^2+s^2)}M^T\right)M = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 \mathbf{SO}

$$M^{-1} = \frac{1}{(p^2 + q^2 + r^2 + s^2)} M^T = \frac{1}{(p^2 + q^2 + r^2 + s^2)} \begin{bmatrix} p & q & r & s \\ -q & p & -s & r \\ -r & s & p & -q \\ -s & -r & q & p \end{bmatrix}.$$

Problem 2.

Consider a consistent system $A\vec{x} = \vec{b}$.

(a) Show that this system has a solution $\vec{x_0}$ in $(\ker A)^{\perp}$. Justify why an arbitrary solution \vec{x} of the system can be written as $\vec{x} = \vec{x_h} + \vec{x_0}$, where $\vec{x_h}$ is in ker(A) and

 $\vec{x_0}$ is in $(\ker A)^{\perp}$.

- (b) Show that the system $A\vec{x} = \vec{b}$ has only one solution in $(\ker A)^{\perp}$.
- (c) If $\vec{x_0}$ is the solution in $(\ker A)^{\perp}$ and $\vec{x_1}$ is another solution of the system $A\vec{x} = \vec{b}$, show that $||\vec{x_0}|| < ||\vec{x_1}||$. The vector $\vec{x_0}$ is called the minimal solution of the linear system $A\vec{x} = \vec{b}$.

Solution:

(a) Since the system $A\vec{x} = \vec{b}$ is consistent, it has at least one solution \vec{x} . Let $\vec{x} = \vec{x}^{||} + \vec{x}^{\perp}$ be the decomposition of \vec{x} into the components parallel and perpendicular to $V = \ker(A)$. In particular \vec{x}^{\perp} is in $(\ker(A))^{\perp}$ and $\vec{x}^{||} = \operatorname{proj}_{V}\vec{x}$ is in $\ker(A)$ so $A\vec{x}^{||} = \vec{0}$. Now

$$\vec{b} = A\vec{x} = A(\vec{x}^{||} + \vec{x}^{\perp}) = A\vec{x}^{||} + A\vec{x}^{\perp} = A\vec{x}^{\perp}$$

so $\vec{x_0} = \vec{x}^{\perp}$ is a solution of the system in $(\ker(A))^{\perp}$ and $\vec{x_h} = \vec{x}^{\parallel}$ is in $\ker(A)$.

- (b) Suppose that $A\vec{x} = \vec{b}$ has two solutions $\vec{x_1}$ and $\vec{x_2}$ in $(\ker(A))^{\perp}$. Since $(\ker(A))^{\perp}$ is a linear subspace, then $\vec{x_1} \vec{x_2}$ is in $(\ker(A))^{\perp}$. Thus $A(\vec{x_1} \vec{x_2}) = A\vec{x_1} A\vec{x_2} = \vec{b} \vec{b} = \vec{0}$ so $\vec{x_1} \vec{x_2}$ is in $\ker(A)$. Now $\vec{x_1} \vec{x_2}$ is both in $\ker(A)$ and $(\ker(A))^{\perp}$, but $\vec{0}$ is the only element in both subspaces, so $\vec{x_1} \vec{x_2} = \vec{0}$. Thus $\vec{x_1} = \vec{x_2}$.
- (c) Let $\vec{x_1} = \vec{x_1}^{\parallel} + \vec{x_1}^{\perp}$ be the decomposition of $\vec{x_1}$ into the components parallel and perpendicular to $V = \ker(A)$. Now by the first part above we have that $\vec{x_1}^{\perp}$ is a solution of the system in $(\ker(A))^{\perp}$. Since $\vec{x_0}$ is also a solution of the system in $(\ker(A))^{\perp}$, by the second part above we have $\vec{x_1}^{\perp} = \vec{x_0}$. Since $\vec{x_1} \neq \vec{x_0}$ we have $\vec{x_1}^{\parallel} \neq \vec{0}$, so $||\vec{x_1}^{\parallel}|| > 0$ and by the Pythagoras theorem

$$||\vec{x_1}|| = ||\vec{x_1}|| + \vec{x_0}|| \ge ||\vec{x_1}|| + ||\vec{x_0}|| > ||\vec{x_0}||.$$

Problem 3.

Define the term minimal least-squares solution of a linear system. Explain why the minimal least-squares solution \vec{x}^* of a linear system $A\vec{x} = \vec{b}$ is in $(\ker A)^{\perp}$.

Solution: We know that the least-squares solution of a linear system $A\vec{x} = \vec{b}$ are the exact solutions of the consistent linear system $A^T A \vec{x} = A^T \vec{b}$. In the previous problem we defined the term minimal solution of a consistent linear system. We then define the minimal least-squares solution of the linear system $A\vec{x} = \vec{b}$ to be the minimal solutions of the consistent linear system $A^T A \vec{x} = A^T \vec{b}$.

We first prove that $\ker(A) = \ker(A^T A)$, this will be useful. Let \vec{v} be in $\ker(A)$, then $A^T A \vec{v} = A^T \vec{0} = \vec{0}$ so \vec{v} is in $\ker(A^T A)$. Let \vec{v} be in $\ker(A^T A)$, then $\vec{0} = A^T A \vec{v} =$

 $A^{T}(\vec{Av})$ so $A\vec{v}$ is in ker (A^{T}) . Now $A\vec{v}$ is in im(A), and also in ker $(A^{T}) = (im(A))^{\perp}$, but $\vec{0}$ is the only element in both subspaces, so $A\vec{v} = \vec{0}$, so \vec{v} is in ker(A).

Now, let \vec{x}^* be the minimal least-squares solution of the linear system $A\vec{x} = \vec{b}$. Then \vec{x}^* is the minimal solutions of the consistent linear system $A^T A \vec{x} = A^T \vec{b}$, so by the previous exercise \vec{x}^* is in $(\ker(A^T A))^{\perp} = (\ker(A))^{\perp}$.