Math 33A
 Linear Algebra and Applications

Discussion for February 7-11, 2022

Problem 1.

The following is one way to define the quaternions, discovered in 1843 by the Irish mathematician Sir W. R. Hamilton. Consider the set H of all 4×4 matrices M of the form

$$
M=\left[\begin{array}{cccc}
p & -q & -r & -s \\
q & p & s & -r \\
r & -s & p & q \\
s & r & -q & p
\end{array}\right]
$$

where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned form as

$$
M=\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]
$$

where A and B are rotation-scaling matrices.
(a) Show that H is closed under addition: If M and N are in H, then so is $M+N$.
(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary scalar, then $k M$ is in H.
(c) The above show that H is a subspace of the linear space $\mathbb{R}^{4 \times 4}$. Find a basis of H, and thus determine the dimension of H.
(d) Show that H is closed under multiplication: If M and N are in H, then so is $M N$.
(e) Show that if M is in H, then so is M^{T}.
(f) For a matrix M in H, compute $M^{T} M$.
(g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M^{-1} necessarily in H as well?
(h) If M and N are in H, does the equation $M N=N M$ always hold?

Solution:

(a) When we add two matrices in H we obtain another matrix in H

$$
\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]+\left[\begin{array}{cc}
C & -D^{T} \\
D & C^{T}
\end{array}\right]=\left[\begin{array}{cc}
(A+C) & -(B+D)^{T} \\
(B+D) & (A+C)^{T}
\end{array}\right]
$$

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

$$
k\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]=\left[\begin{array}{cc}
(k A) & -(k B)^{T} \\
(k B) & (k A)^{T}
\end{array}\right] .
$$

(c) The general element of H has four arbitrary constants, so H has dimension 4 . A basis is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

(d) When we multiply two matrices in H we obtain another matrix in H

$$
\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]\left[\begin{array}{cc}
C & -D^{T} \\
D & C^{T}
\end{array}\right]=\left[\begin{array}{cc}
\left(A C-B^{T} D\right) & -\left(B C+A^{T} D\right)^{T} \\
\left(B C+A^{T} D\right) & \left(A C-B^{T} D\right)^{T}
\end{array}\right]
$$

where it is useful to notice that since all A, B, C, D are rotation-scaling matrices, they commute with each other.
(e) When we transpose a matrix in H we obtain another matrix in H

$$
\left[\begin{array}{cc}
A & -B^{T} \\
B & A^{T}
\end{array}\right]^{T}=\left[\begin{array}{cc}
\left(A^{T}\right) & -(-B)^{T} \\
(-B) & \left(A^{T}\right)^{T}
\end{array}\right]
$$

(f) We expand $M^{T} M$ as

$$
\left[\begin{array}{cccc}
p & q & r & s \\
-q & p & -s & r \\
-r & s & p & -q \\
-s & -r & q & p
\end{array}\right]\left[\begin{array}{cccc}
p & -q & -r & -s \\
q & p & s & -r \\
r & -s & p & q \\
s & r & -q & p
\end{array}\right]=\left(p^{2}+q^{2}+r^{2}+s^{2}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

(g) If $M \neq 0$ then $p^{2}+q^{2}+r^{2}+s^{2} \neq 0$ so by the above

$$
M^{T} M=\left(p^{2}+q^{2}+r^{2}+s^{2}\right)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and thus

$$
\left(\frac{1}{\left(p^{2}+q^{2}+r^{2}+s^{2}\right)} M^{T}\right) M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

so

$$
M^{-1}=\frac{1}{\left(p^{2}+q^{2}+r^{2}+s^{2}\right)} M^{T}=\frac{1}{\left(p^{2}+q^{2}+r^{2}+s^{2}\right)}\left[\begin{array}{cccc}
p & q & r & s \\
-q & p & -s & r \\
-r & s & p & -q \\
-s & -r & q & p
\end{array}\right] .
$$

Problem 2.

Consider a consistent system $A \vec{x}=\vec{b}$.
(a) Show that this system has a solution $\overrightarrow{x_{0}}$ in $(\operatorname{ker} A)^{\perp}$. Justify why an arbitrary solution \vec{x} of the system can be written as $\vec{x}=\overrightarrow{x_{h}}+\overrightarrow{x_{0}}$, where $\overrightarrow{x_{h}}$ is in $\operatorname{ker}(A)$ and
$\overrightarrow{x_{0}}$ is in $(\operatorname{ker} A)^{\perp}$.
(b) Show that the system $A \vec{x}=\vec{b}$ has only one solution in $(\operatorname{ker} A)^{\perp}$.
(c) If $\overrightarrow{x_{0}}$ is the solution in $(\operatorname{ker} A)^{\perp}$ and $\overrightarrow{x_{1}}$ is another solution of the system $A \vec{x}=\vec{b}$, show that $\left\|\overrightarrow{x_{0}}\right\|<\left\|\overrightarrow{x_{1}}\right\|$. The vector $\overrightarrow{x_{0}}$ is called the minimal solution of the linear system $A \vec{x}=\vec{b}$.

Solution:

(a) Since the system $A \vec{x}=\vec{b}$ is consistent, it has at least one solution \vec{x}. Let $\vec{x}=\vec{x}^{\|}+\vec{x}^{\perp}$ be the decomposition of \vec{x} into the components parallel and perpendicular to $V=\operatorname{ker}(A)$. In particular \vec{x}^{\perp} is in $(\operatorname{ker}(A))^{\perp}$ and $\vec{x}^{\|}=\operatorname{proj}_{V} \vec{x}$ is in $\operatorname{ker}(A)$ so $A \vec{x}^{\|}=\overrightarrow{0}$. Now

$$
\vec{b}=A \vec{x}=A\left(\vec{x}^{\|}+\vec{x}^{\perp}\right)=A \vec{x}^{\|}+A \vec{x}^{\perp}=A \vec{x}^{\perp}
$$

so $\overrightarrow{x_{0}}=\vec{x}^{\perp}$ is a solution of the system in $(\operatorname{ker}(A))^{\perp}$ and $\overrightarrow{x_{h}}=\vec{x}^{\|}$is in $\operatorname{ker}(A)$.
(b) Suppose that $A \vec{x}=\vec{b}$ has two solutions $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ in $(\operatorname{ker}(A))^{\perp}$. Since $(\operatorname{ker}(A))^{\perp}$ is a linear subspace, then $\overrightarrow{x_{1}}-\overrightarrow{x_{2}}$ is in $(\operatorname{ker}(A))^{\perp}$. Thus $A\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right)=A \overrightarrow{x_{1}}-A \overrightarrow{x_{2}}=$ $\vec{b}-\vec{b}=\overrightarrow{0}$ so $\overrightarrow{x_{1}}-\overrightarrow{x_{2}}$ is in $\operatorname{ker}(A)$. Now $\overrightarrow{x_{1}}-\overrightarrow{x_{2}}$ is both in $\operatorname{ker}(A)$ and $(\operatorname{ker}(A))^{\perp}$, but $\overrightarrow{0}$ is the only element in both subspaces, so $\overrightarrow{x_{1}}-\overrightarrow{x_{2}}=\overrightarrow{0}$. Thus $\overrightarrow{x_{1}}=\overrightarrow{x_{2}}$.
(c) Let $\overrightarrow{x_{1}}={\overrightarrow{x_{1}}}^{\|}+{\overrightarrow{x_{1}}}^{\perp}$ be the decomposition of $\overrightarrow{x_{1}}$ into the components parallel and perpendicular to $V=\operatorname{ker}(A)$. Now by the first part above we have that $\overrightarrow{x_{1}}{ }^{\perp}$ is a solution of the system in $(\operatorname{ker}(A))^{\perp}$. Since $\overrightarrow{x_{0}}$ is also a solution of the system in $(\operatorname{ker}(A))^{\perp}$, by the second part above we have $\overrightarrow{x_{1}}{ }^{\perp}=\overrightarrow{x_{0}}$. Since $\overrightarrow{x_{1}} \neq \overrightarrow{x_{0}}$ we have $\overrightarrow{x_{1}} \| \neq \overrightarrow{0}$, so $\left\|\overrightarrow{x_{1}}\right\| \|>0$ and by the Pythagoras theorem

$$
\left\|\overrightarrow{x_{1}}\right\|=\left\|\overrightarrow{x_{1}}\right\|+\overrightarrow{x_{0}}\|\geq\| \overrightarrow{x_{1}}\| \|+\left\|\overrightarrow{x_{0}}\right\|>\left\|\overrightarrow{x_{0}}\right\|
$$

Problem 3.

Define the term minimal least-squares solution of a linear system. Explain why the minimal least-squares solution \vec{x}^{*} of a linear system $A \vec{x}=\vec{b}$ is in $(\operatorname{ker} A)^{\perp}$.

Solution: We know that the least-squares solution of a linear system $A \vec{x}=\vec{b}$ are the exact solutions of the consistent linear system $A^{T} A \vec{x}=A^{T} \vec{b}$. In the previous problem we defined the term minimal solution of a consistent linear system. We then define the minimal least-squares solution of the linear system $A \vec{x}=\vec{b}$ to be the minimal solutions of the consistent linear system $A^{T} A \vec{x}=A^{T} \vec{b}$.
We first prove that $\operatorname{ker}(A)=\operatorname{ker}\left(A^{T} A\right)$, this will be useful. Let \vec{v} be in $\operatorname{ker}(A)$, then $A^{T} A \vec{v}=A^{T} \overrightarrow{0}=\overrightarrow{0}$ so \vec{v} is in $\operatorname{ker}\left(A^{T} A\right)$. Let \vec{v} be in $\operatorname{ker}\left(A^{T} A\right)$, then $\overrightarrow{0}=A^{T} A \vec{v}=$
$A^{T}(\overrightarrow{A \vec{v}})$ so $A \vec{v}$ is in $\operatorname{ker}\left(A^{T}\right)$. Now $A \vec{v}$ is in $\operatorname{im}(A)$, and also in $\operatorname{ker}\left(A^{T}\right)=(\operatorname{im}(A))^{\perp}$, but $\overrightarrow{0}$ is the only element in both subspaces, so $A \vec{v}=\overrightarrow{0}$, so \vec{v} is in $\operatorname{ker}(A)$.
Now, let \vec{x}^{*} be the minimal least-squares solution of the linear system $A \vec{x}=\vec{b}$. Then \vec{x}^{*} is the minimal solutions of the consistent linear system $A^{T} A \vec{x}=A^{T} \vec{b}$, so by the previous exercise \vec{x}^{*} is in $\left(\operatorname{ker}\left(A^{T} A\right)\right)^{\perp}=(\operatorname{ker}(A))^{\perp}$.

