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Problem 1. 5pts.
Determine whether the following statements are true or false.

(a) If A and B are symmetric n× n matrices, then ABBA must be symmetric as well.

(b) The span of vectors ~v1, . . . , ~vn consists of all linear combinations of vectors ~v1, . . . , ~vn.

(c) If two nonzero vectors are linearly dependent, then each of them is a scalar multiple
of the other.

(d) If A and B are symmetric n× n matrices, then AB must be symmetric as well.

(e) There exists a nonzero 4× 4 matrix A such that det(A) = det(4A).



Problem 2. 5pts.
Determine whether the following statements are true or false.

(a) There exist invertible 2×2 matricesA andB such that det(A+B) = det(A)+det(B).

(b) The trace of any square matrix is the sum of its diagonal entries.

(c) If vector ~v is an eigenvector of both A and B, then ~v is an eigenvector of AB.

(d) If matrix A is positive definite, then all the eigenvalues of A must be positive.

(e) The function q(x1, x2) = 3x21 + 4x1x2 + 5x2 is a quadratic form.



Problem 3. 7pts.
Consider a linear system of four equations with three unknowns. We are told that the
system has a unique solution. What does the reduced row-echelon form of the coefficient
matrix of this system look like? Explain your answer.

Solution: There are three leading variables, so there must be a leading one in each
column, so the reduced-row echelon form is

1 0 0
0 1 0
0 0 1
0 0 0

 .



Problem 4. 8pts.
Find the matrix of the linear transformation from R3 to R3 given by reflection about the
x− z-plane.

Solution: The matrix is 1 0 0
0 −1 0
0 0 1

 .



Problem 5. 8pts.
Find the inverse of the linear transformation

T


x1
x2
x3
x4

 = x1


22
−16

8
5

+ x2


13
−3
9
4

+ x3


8
−2
7
3

+ x4


3
−2
2
1


from R4 to R4.

Solution: The inverse is the linear transformation

T


x1
x2
x3
x4

 = x1


1
−2
4
−9

+ x2


−2
5
−9
17

+ x3


9
−22
41
−80

+ x4


−25
60
−112
222


from R4 to R4.



Problem 6. 7pts.
Consider the plane 2x1 − 3x2 + 4x3 = 0. Find a basis B of this plane such that 2

0
−1


B

=

[
2
3

]
.

Solution: There are multiple solutions, one is

B =


3

2
0

 ,
−4/3
−4/3
−1

 .



Problem 7. 8pts.
Find the matrix B of the linear transformation

T (~x) =

[
0 1
1 0

]
~x with respect to the basis ~v1 =

[
1
1

]
, ~v2 =

[
1
−1

]
.

Solution: We have

B =

[
1 0
0 −1

]
.



Problem 8. 8pts.
Find the QR factorization of the matrix

1 1 0
1 0 2
1 0 1
1 1 −1

 .

Solution: We have
1 1 0
1 0 2
1 0 1
1 1 −1

 =
1

2


1 1 1
1 −1 1
1 −1 −1
1 1 −1


2 1 1

0 1 −2
0 0 1


so

Q =
1

2


1 1 1
1 −1 1
1 −1 −1
1 1 −1

 , and R =

2 1 1
0 1 −2
0 0 1


is the QR factorization.



Problem 9. 8pts.
Find all the least-squares solutions ~x∗ of the system A~x = ~b where

A =

[
1 3
2 6

]
and ~b =

[
5
0

]
.

Draw a sketch showing the vector ~b, the image of A, the vector A~x∗, and the vector
~b− A~x∗.

Solution: The solutions are

~x∗ =

[
1− 3t
t

]
where t is an arbitrary real constant.



Problem 10. 8pts.
Find the determinant of the matrix

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625

 .

Solution: We have

det


1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625

 = 288.



Problem 11. 7pts.
Use Cramer’s rule to solve the system

2x+ 3y = 8

4y + 5z = 3

6x+ 7z = −1.

Solution: The solutions are

x =

det

 8 3 0
3 4 5
−1 0 7


146

= 1,

y =

det

2 8 0
0 3 5
6 −1 7


146

= 2,

x =

det

2 3 8
0 4 3
6 0 −1


146

= −1.



Problem 12. 7pts.
Show that 4 is an eigenvalue of [

−6 6
−15 13

]
and find all corresponding eigenvectors.

Solution: Solving [
−6 6
−15 13

] [
a
b

]
= 4

[
a
b

]
we find [

a
b

]
=

[
3t
5

t

]
where t is an arbitrary non-zero real constant.



Problem 13. 7pts.
Suppose a real 3×3 matrix A has only two distinct eigenvalues. Suppose that tr(A) = 1
and det(A) = 3. Find the eigenvalues of A with their algebraic multiplicities.

Solution: We have 1 = tr(A) = λ1+λ2+λ3 and det(A) = λ1λ2λ3 with λ1 = λ2 6= λ3
so λ1 = λ2 = −1 and λ3 = 3.



Problem 14. 7pts.
Find the matrix of the quadratic form q(x1, x2) = 6x21 − 7x1x2 + 8x22.

Solution: The matrix is [
6 −7/2
−7/2 8

]
.


