Math 33A Linear Algebra and Applications

Practice Midterm 2

Instructions: You have 24 hours to complete this exam. There are 7 questions, worth a total of 100 points. This test is closed book and closed notes. No calculator is allowed. This document is the template where you need to provide your answers. Please print or download this document, complete it in the space provided, show your work in the space provided, clearly box your final answer, and upload a pdf version of this document with your solutions. Do not upload a different document, and do not upload loose paper sheets. Do not forget to write your name, section (if you do not know your section, please write the name of your TA), and UID in the space below. Failure to comply with any of these instructions may have repercussions in your final grade.

Name:			
ID number:			
Section:			

Question	Points	Score
1	10	
2	15	
3	15	
4	15	
5	15	
6	15	
7	15	
Total:	100	

Problem 1. 10pts.

Determine whether the following statements are true or false.

- (a) If matrix A is orthogonal, then matrix A^2 must be orthogonal as well.
- (b) All nonzero symmetric matrices are invertible.
- (c) If \vec{u} is a unit vector in \mathbb{R}^n and $L = \operatorname{span}(\vec{u})$, then $\operatorname{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{x}$ for all vectors \vec{x} in \mathbb{R}^n .
- (d) If A is an invertible $n \times n$ matrix, then $det(A^T) = det(A^{-1})$.
- (e) There exist real invertible 3×3 matrices A and S such that $S^{-1}AS = 2A$.

Problem 2. 15pts. Find scalars a, b, c, d, e, f, g such that the vectors

$$\begin{bmatrix} a \\ d \\ f \end{bmatrix}, \begin{bmatrix} b \\ 1 \\ g \end{bmatrix}, \begin{bmatrix} c \\ e \\ 1/2 \end{bmatrix}$$

are orthonormal.

Problem 3. 15pts.

Find the QR factorization of the following matrix.

Problem 4. 15pts. Find all orthogonal matrices of the form

$$\begin{bmatrix} a & b & 0 \\ c & d & 1 \\ e & f & 0 \end{bmatrix}.$$

Problem 5. 15pts.

Find the least-squares solution \vec{x}^* of the system $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}.$$

Draw a sketch showing the vector \vec{b} , the image of A, the vector $A\vec{x}^*$, and the vector $\vec{b} - A\vec{x}^*$.

Problem 6. 15pts. Consider a 4×4 matrix A with rows $\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}$. If det(A) = 8, find

$$\det \begin{bmatrix} \vec{v_1} \\ \vec{v_2} + 7\vec{v_4} \\ \vec{v_3} - 2\vec{v_4} \\ \vec{v_4} \end{bmatrix}.$$

Problem 7. 15pts.

Find the classical adjoint of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 6 & 6 \end{bmatrix}.$$

and use the result to find A^{-1} .