
DIAGONALIZATION AND THE FIBONACCI SEQUENCE (MATH 33A)

JACOB SWENBERG

In this short note, we look at how diagonalization of matrices can be applied to answer some
questions about the Fibonacci sequence.

1. The Fibonacci Sequence

The Fibonacci sequence is the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

where each term is obtained by adding the two previous terms. For example, we start with 1, 1.
To get the next term, we take 1 + 1 = 2. For the next term, we take 1 + 2 = 3. For the next term,
we take 2 + 3 = 5. Here’s a picture:

1 +1 = 2
1 +2 = 3

2 +3 = 5
3 +5 = 8
...

We can define the Fibonacci sequence using a recursive formula: we declare F0 = 0, F1 = 1, and
for n > 1,

Fn = Fn−1 + Fn−2.

The Fibonacci sequence comes up every once in a while in pop culture, in part because of its
relation to the Golden Ratio which has some mystical significance for some people. The purpose
of this note is not to convince you of the mystical power of the Fibonacci sequence, nor to detail
why this sequence occurs in nature so often. Instead, I want to answer the following question:

Is there a formula for the nth Fibonacci number?

The answer turns out to be yes, and we will see that linear algebra can help us find the answer.

2. Using Linear Algebra

The “trick” explained in this section comes up often in math, especially when solving differential
equations. This method can be most directly extended to solve linear difference equations,
which are equations that relate the difference between consecutive terms in a sequence to the
previous terms in the sequence in a linear way.

Instead of looking at a sequence of numbers, we’d like to look at a sequence of vectors. We define,
for n ≥ 1,

vn =

[
Fn

Fn−1

]
∈ Rn

Why would we want to do this? The defining relation for the Fibonacci sequence then gives

vn+1 =

[
Fn+1

Fn

]
=

[
Fn + Fn−1

Fn

]
=

[
1 1
1 0

] [
Fn

Fn−1

]
.
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If we let A =

[
1 1
1 0

]
, then we have

vn+1 = Avn.

From this formula, we get that
vn = An−1v1.

So to find a formula for vn (which will give a formula for Fn), we can first find a formula for An.
This is where diagonalization comes in!

3. Diagonalization

We want a formula for An. If A was diagonal with entires λ1 and λ2, then

An =

[
λn1 0
0 λn2

]
.

However, A is not diagonal. Let’s diagonalize!
The characteristic polynomial of A is

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1.

The roots of this polynomial (and hence the eigenvalues of A) are

1±
√

5

2
.

The number

φ =
1 +
√

5

2
≈ 1.618

is called the Golden Ratio. It satisfies many interesting properties, such as φ2 = φ+ 1 (squaring
φ is the same thing as adding 1), or 1/φ = φ − 1 (the reciprocal of φ is 1 less). The other root of
the characteristic polynomial can be written as −1/φ, or 1− φ.

Now, we find eigenvectors for these eigenvalues, using Gauss–Jordan elimination[
1− φ 1

1 −φ

]
→
[

1 −φ
1− φ 1

]
→
[
1 −φ
0 1− φ(φ− 1)

]
→
[
1 −φ
0 0

]
,

in the last step using that φ2−φ−1 = 0. So an eigenvector for φ is (φ, 1). Similarly, an eigenvector
for 1− φ is (1− φ, 1). So our change of basis matrix is

S =

[
φ 1− φ
1 1

]
.

This has determinant 2φ− 1 =
√

5 = 5/(2φ− 1). So

S−1 =
2φ− 1

5

[
1 φ− 1
−1 φ

]
=

1

5

[
2φ− 1 −φ+ 3
1− 2φ φ+ 2

]
.

Now here comes the magic. We know that

A = S

[
φ 0
0 1− φ

]
S−1.

But then

A2 = S

[
φ 0
0 1− φ

]
S−1S

[
φ 0
0 1− φ

]
S−1 = S

[
φ 0
0 1− φ

]2
S−1.

In general,

An = S

[
φ 0
0 1− φ

]n
S−1 = S

[
φn 0
0 (1− φ)n

]
S−1.
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So

vn = An−1v1

= S

[
φn−1 0

0 (1− φ)n−1

]
S−1

[
1
0

]
=

[
φ 1− φ
1 1

] [
φn−1 0

0 (1− φ)n−1

]
1

5

[
2φ− 1 −φ+ 3
1− 2φ φ+ 2

] [
1
0

]
=

1

5

[
φ 1− φ
1 1

] [
φn−1 0

0 (1− φ)n−1

] [
2φ− 1
1− 2φ

]
=

1

5

[
φ 1− φ
1 1

] [
2φn − φn−1

(1− φ)n + (1− φ)n−2

]
=

1

5

[
2φn+1 − φn + (1− φ)n+1 + (1− φ)n−1

2φn − φn−1 + (1− φ)n + (1− φ)n−2

]
=

1

5

[
(2φ− 1)φn + (1− 2φ)(1− φ)n

(2φ− 1)φn−1 + (1− 2φ)(1− φ)n−1

]
=

1√
5

[
φn − (1− φ)n

φn−1 − (1− φ)n−1

]
.

Remembering that vn = (Fn, Fn−1), we have

Fn =
φn − (1− φ)n√

5
.

4. Consequences

We note that |1− φ| ≈ −0.618, so for n ≥ 1,∣∣∣∣(1− φ)n√
5

∣∣∣∣ < 1

2
.

So we can conclude that ∣∣∣∣Fn −
φn√

5

∣∣∣∣ < 1

2
.

In other words, Fn is the closest integer to φn/
√

5. This makes some calculations much faster. For
instance, φ20/

√
5 ≈ 6765.00000, so F20 = 6765. In fact, we note that∣∣∣∣Fn+1

Fn
− φ

∣∣∣∣ =

∣∣∣∣φn+1 − (1− φ)n+1 − φn+1 + φ(1− φ)n

φn − (1− φ)n

∣∣∣∣
=

∣∣∣∣(1− φ)n+1 + (1− φ)n−1

φn − (1− φ)n

∣∣∣∣
≤ |1− φ|n.

So we can approximate φ pretty closely by the ratio of consecutive Fibonacci numbers. For example,

F21/F20 = 10946/6765 ≈ 1.61803 ≈ φ.

We can say something even stronger: for n ≥ 4,

|Fn+1 − φFn| = |1− φ|n|1− 2φ| =
√

5|1− φ|n < 1

2
.
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So given Fn for any n ≥ 4, we can find Fn+1 just by multiplying by φ and rounding. We have
to be careful in practice, though, because we only calculate φ up to some finite precision, and the
rounding that a calculator does might give a slightly different answer.

By slightly changing our recurrence relation for Fn, we can find other sequences that approximate
roots to other polynomials. For example, suppose we wanted to find a root to

x3 − x− 1.

Using Cardano’s method, we could find that

3

√√√√1 +
√

23
27

2
+

3

√√√√1−
√

23
27

2

is a root. However, if you didn’t have a calculator, this might be hard to estimate. Instead, we
consider the sequence defined by

an+3 = an+1 + an.

We pick some small random starting numbers, like 1, 1, 1, and calculate some terms

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . .

Taking the ratio of two consecutive large terms approximates a root to the polynomial. Indeed,

(86/65)3 − (86/65)− 1 ≈ −0.007.

So 86/65 approximates a root to the polynomial x3 − x− 1.
The formula for Fn also gives us some interesting number theoretic facts. For example, some

fancier number theory from the formula shows that if n divides m, then Fn divides Fm. For example,
we have F20 = 6765 is divisible by F5 = 5. The reverse question turns out to be a lot harder. For
example, it follows from above that if Fn is a prime number, then n is a prime number. But the
converse is not true, and it is unknown if there are even infinitely many Fibonacci numbers that
are primes.
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