Math 31B Integration and Infinite Series

Practice Midterm 3

Instructions: You have 24 hours to complete this exam. There are 6 questions, worth a total of 100 points. This test is closed book and closed notes. No calculator is allowed. This document is the template where you need to provide your answers. Please print or download this document, complete it in the space provided, show your work in the space provided, clearly box your final answer, and upload a pdf version of this document with your solutions. Do **NOT** upload a different document, and do **NOT** upload loose paper sheets. Do not forget to write your name, section (if you do not know your section, please write the name of your TA), and UID in the space below. **Failure to comply with any of these instructions may have repercussions in your final grade.**

ame:	
D number:	
ection:	

Question	Points	Score
1	15	
2	17	
3	17	
4	17	
5	17	
6	17	
Total:	100	

Problem 1. 15pts.

Determine whether the following statements are true or false. If the statement is true, write T in the box provided under the statement. If the statement is false, write F in the box provided under the statement. Do not write "true" or "false".

- (a) ____ The ratio test can always be used to determine whether an infinite series converges or diverges.
- (b) ____ If an infinite series converges absolutely then it must also converge.
- (c) _____ A series with positive terms whose general term converges to zero is always convergent.
- (d) ____ Let f(x) be an infinitely differentiable function defined around a real number c. Then we can compute the Taylor series of f(x) centered around c.
- (e) ____ Let F(x) be a power series. Then F(x) has a radius of convergence.

Problem 2. 17pts. Determine whether the infinite series $\sum_{n=1}^{\infty} \frac{1}{2^{\ln(n)}}$ diverges or converges and, if so, evaluate it.

Problem 3. 17pts.

Determine whether the infinite series

$$S = \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \frac{1}{5} - \frac{1}{5} + \cdots$$

diverges or converges and, if so, evaluate it.

Problem 4. 17pts. Determine whether the infinite series $\sum_{n=0}^{\infty} \left(\frac{k}{3k+1}\right)^n$ diverges or converges.

Problem 5. 17pts. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{n2^n}$.

Problem 6. 17pts.

- (a) Find the Taylor series centered at c = 3 of $f(x) = \frac{1}{1-x^2}$, and find the interval of convergence of this Taylor series.
- (b) Find the terms of the Taylor series centered at c = 0 of $f(x) = \frac{\sin(x)}{1-x}$ up to degree 4.