Math 33A
 Linear Algebra and Applications

Discussion for June 27-July 1, 2022

Problem 1.

We say that two $n \times m$ matrices in reduced row-echelon form are of the same type if they contain the same number of leading 1's in the same positions. Give an example of two 2×3 matrices of the same type. Give an example of two 2×3 matrices of different type.

Problem 2(\star).

How many types of 2×2 matrices in reduced row-echelon form are there?

Problem 3.

How many types of 3×2 matrices in reduced row-echelon form are there?

Problem 4.

Suppose you apply Gauss-Jordan elimination to a matrix. Explain how you can be sure that the resulting matrix is in reduced row-echelon form.

Problem 5.

Suppose matrix A is transformed into matrix B by means of an elementary row operation. Is there an elementary row operation that transforms B into A ? Explain.

Problem 6.

Suppose matrix A is transformed into matrix B by a sequence of elementary row operations. Is there a sequence of elementary row operations that transforms B into A ? Explain.

Problem 7.

Consider an $n \times m$ matrix A. Can you transform $\operatorname{rref}(A)$ into A by a sequence of elementary row operations? Explain.

Problem 8.

Show that if T is a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then

$$
T\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} T\left(\overrightarrow{e_{1}}\right)+\cdots+x_{m} T\left(\overrightarrow{e_{m}}\right)
$$

where $\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{m}}$ are the standard vectors in \mathbb{R}^{m}.

Problem 9(\star).

Describe all linear transformations from \mathbb{R} to \mathbb{R}. What do their graphs look like?

Problem 10.

Describe all linear transformations from \mathbb{R}^{2} to \mathbb{R}. What do their graphs look like?

Problem 11.

Consider two linear transformations $\vec{y}=T(\vec{x})$ and $\vec{z}=L(\vec{y})$, where T goes from \mathbb{R}^{m} to \mathbb{R}^{p} and L goes from \mathbb{R}^{p} to \mathbb{R}^{n}. Is the transformation $\vec{z}=L(T(\vec{x}))$ linear as well?

Problem 12.

Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] .
$$

Find the matrix of the linear transformation $T(\vec{x})=B(A \vec{x})$.

