Math 33A
Linear Algebra and Applications
Discussion for July 4-8, 2022

Problem 1.

Show that if a square matrix A has two equal columns, then A is not invertible.

Problem 2(\star).

Which of the following linear transformations T from \mathbb{R}^{3} to \mathbb{R}^{3} are invertible? Find the inverse if it exists.
(a) Reflection about a plane.
(b) Orthogonal projection onto a plane.
(c) Scaling by a real factor (namely, fix a real number r and consider $T(\vec{v})=r \vec{v}$, for all vectors \vec{v}).
(d) Rotation about an axis.

Problem 3.

A square matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0 . Give an example of two different 3×3 permutation matrices.

Problem 4.

Are permutation matrices invertible? If so, is the inverse a permutation matrix as well?

Problem 5.

Consider two invertible $n \times n$ matrices A and B. Is the linear transformation $\vec{y}=A(B(\vec{x}))$ invertible? If so, what is the inverse?

Problem 6.

Are the columns of an invertible matrix linearly independent?

Problem 7.

Consider linearly independent vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$ in \mathbb{R}^{n}, and let A be an invertible $m \times m$ matrix. Are the columns of the following matrix linearly independent?

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}} \\
\mid & & \mid
\end{array}\right] A
$$

Problem 8.

Consider a matrix A of the form

$$
A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

where $a^{2}+b^{2}=1$ and $a \neq 1$. Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis

$$
\left[\begin{array}{c}
b \\
1-a
\end{array}\right],\left[\begin{array}{c}
a-1 \\
b
\end{array}\right] .
$$

Interpret the answer geometrically.

Problem 9.

Let A and B be square matrices, if there is an invertible matrix S such that $B=S^{-1} A S$ we say that A is similar to B. Find an invertible 2×2 matrix S such that

$$
S^{-1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] S
$$

is of the form

$$
\left[\begin{array}{cc}
0 & b \\
1 & d
\end{array}\right] .
$$

What can you say about two of those matrices?

Problem 10.

If A is a 2×2 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

show that A is similar to a diagonal matrix D. Find an invertible S such that $S^{-1} A S=$ D.

Problem 11.

If $c \neq 0$, find the matrix of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \vec{x}
$$

with respect to the basis

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
a \\
c
\end{array}\right] .
$$

Problem 12(\star).

Is there a basis \mathfrak{B} of \mathbb{R}^{2} such that \mathfrak{B}-matrix B of the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \vec{x}
$$

is upper triangular?

