Math 33A Linear Algebra and Applications

Discussion for July 4-8, 2022

Problem 1.

Show that if a square matrix A has two equal columns, then A is not invertible.

Problem $2(\star)$.

Which of the following linear transformations T from \mathbb{R}^3 to \mathbb{R}^3 are invertible? Find the inverse if it exists.

- (a) Reflection about a plane.
- (b) Orthogonal projection onto a plane.
- (c) Scaling by a real factor (namely, fix a real number r and consider $T(\vec{v}) = r\vec{v}$, for all vectors \vec{v}).
- (d) Rotation about an axis.

Problem 3.

A square matrix is called a permutation matrix if it contains a 1 exactly once in each row and in each column, with all other entries being 0. Give an example of two different 3×3 permutation matrices.

Problem 4.

Are permutation matrices invertible? If so, is the inverse a permutation matrix as well?

Problem 5.

Consider two invertible $n \times n$ matrices A and B. Is the linear transformation $\vec{y} = A(B(\vec{x}))$ invertible? If so, what is the inverse?

Problem 6.

Are the columns of an invertible matrix linearly independent?

Problem 7.

Consider linearly independent vectors $\vec{v_1}, \ldots, \vec{v_m}$ in \mathbb{R}^n , and let A be an invertible $m \times m$ matrix. Are the columns of the following matrix linearly independent?

$$\begin{bmatrix} | & & | \\ \vec{v_1} & \cdots & \vec{v_m} \\ | & & | \end{bmatrix} A$$

Problem 8.

Consider a matrix A of the form

$$A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix},$$

where $a^2 + b^2 = 1$ and $a \neq 1$. Find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis

$$\begin{bmatrix} b\\1-a \end{bmatrix}, \begin{bmatrix} a-1\\b \end{bmatrix}.$$

Interpret the answer geometrically.

Problem 9.

Let A and B be square matrices, if there is an invertible matrix S such that $B = S^{-1}AS$ we say that A is similar to B. Find an invertible 2×2 matrix S such that

$$S^{-1} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} S$$

is of the form

$$\begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix}.$$

What can you say about two of those matrices?

Problem 10.

If A is a 2×2 matrix such that

$$A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3\\6\end{bmatrix}$$
 and $A\begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}-2\\-1\end{bmatrix}$,

show that A is similar to a diagonal matrix D. Find an invertible S such that $S^{-1}AS = D$.

Problem 11.

If $c \neq 0$, find the matrix of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \vec{x}$$

with respect to the basis

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} a \\ c \end{bmatrix}.$$

Problem $12(\star)$.

Is there a basis \mathfrak{B} of \mathbb{R}^2 such that \mathfrak{B} -matrix B of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{x}$$

is upper triangular?