
Math 33A
Linear Algebra and Applications

Discussion for July 11-14, 2022



Problem 1.
Here is an infinite-dimensional version of Euclidean space: In the space of all infinite
sequences, consider the subspace `2 of square-summable sequences (namely, those se-
quences (x1, x2, . . . ) for which the infinite series x2

1 + x2
2 + · · · converges). For x and y

in `2, we define

||~x|| =
√

x2
1 + x2

2 + · · · and ~x · ~y = x1y1 + x2y2 + · · · .

A preliminary question is, why do ||~x|| and ~x · ~y make sense, that is, why are they finite
real numbers?

(a) Check that ~x = (1, 1/2, 1/4, 1/8, 1/16, . . . ) is in `2, and find ||~x||. Recall the formula
for the geometric series: 1 + a + a2 + a3 + · · · = 1/(1− a) if −1 < a < 1.

(b) Find the angle between (1, 0, 0, 0, . . . ) and (1, 1/2, 1/4, 1/8, . . . ).

(c) Give an example of a sequence (x1, x2, . . . ) that converges to 0 (limn→∞ xn = 0)
but does not belong to `2.

(d) Let L be the subspace of `2 spanned by (1, 1/2, 1/4, 1/8, . . . ). Find the orthogonal
projection of (1, 0, 0, 0, . . . ) onto L.

The Hilbert space `2 was initially used mostly in physics: Werner Heisenberg’s formu-
lation of quantum mechanics is in terms of `2. Today, this space is used in many other
applications, including economics. See, for example, the work of the economist Andreu
Mas-Colell of the University of Barcelona.

Problem 2.
Give an algebraic proof for the triangle inequality

||~v + ~w|| ≤ ||~v||+ ||~w||.

Draw a sketch.

Problem 3.

(a) Consider a vector ~v in Rn, and a scalar k. Show that ||k~v|| = |k|||~v||.
(b) Show that if ~v is a nonzero vector in Rn, then ~u = ~v

||~v|| is a unit vector.

Problem 4(?).
Can you find a line L in Rn and a vector ~x in Rn such that ~x · projL~x is negative?
Explain, arguing algebraically.

Problem 5(?).
The following is one way to define the quaternions, discovered in 1843 by the Irish
mathematician Sir W. R. Hamilton. Consider the set H of all 4× 4 matrices M of the
form

M =


p −q −r −s
q p s −r
r −s p q
s r −q p





where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned
form as

M =

[
A −BT

B AT

]
where A and B are rotation–scaling matrices.

(a) Show that H is closed under addition: If M and N are in H, then so is M + N .

(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary
scalar, then kM is in H.

(c) The above show that H is a subspace of the linear space R4×4. Find a basis of H,
and thus determine the dimension of H.

(d) Show that H is closed under multiplication: If M and N are in H, then so is MN .

(e) Show that if M is in H, then so is MT .

(f) For a matrix M in H, compute MTM .

(g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M−1

necessarily in H as well?

(h) If M and N are in H, does the equation MN = NM always hold?

Problem 6.
Consider a consistent system A~x = ~b.

(a) Show that this system has a solution ~x0 in (kerA)⊥. Justify why an arbitrary
solution ~x of the system can be written as ~x = ~xh + ~x0, where ~xh is in ker(A) and
~x0 is in (kerA)⊥.

(b) Show that the system A~x = ~b has only one solution in (kerA)⊥.

(c) If ~x0 is the solution in (kerA)⊥ and ~x1 is another solution of the system A~x = ~b,
show that || ~x0|| < || ~x1||. The vector ~x0 is called the minimal solution of the linear

system A~x = ~b.

Problem 7.
Define the term minimal least-squares solution of a linear system. Explain why the
minimal least-squares solution ~x∗ of a linear system A~x = ~b is in (kerA)⊥.


