Math 33A
Linear Algebra and Applications

Discussion for July 11-14, 2022



Problem 1.
Here is an infinite-dimensional version of Euclidean space: In the space of all infinite
sequences, consider the subspace {5 of square-summable sequences (namely, those se-
quences (z1, T, ...) for which the infinite series 22 + 23 + - - converges). For z and y
in /5, we define

7] =/2f+ 23+ and T -y=x1y1 + Toy2 + -

A preliminary question is, why do ||Z|| and Z - ¥ make sense, that is, why are they finite
real numbers?

(a) Check that ¥ = (1,1/2,1/4,1/8,1/16,...) isin ¢y, and find ||Z||. Recall the formula
for the geometric series: 1 +a+a*+a*+---=1/(1—-a)if -1 <a< 1.

(b) Find the angle between (1,0,0,0,...) and (1,1/2,1/4,1/8,...).

(c) Give an example of a sequence (xy,zs,...) that converges to 0 (lim, o z, = 0)
but does not belong to /5.

(d) Let L be the subspace of 5 spanned by (1,1/2,1/4,1/8,...). Find the orthogonal
projection of (1,0,0,0,...) onto L.

The Hilbert space /5 was initially used mostly in physics: Werner Heisenberg’s formu-
lation of quantum mechanics is in terms of /5. Today, this space is used in many other
applications, including economics. See, for example, the work of the economist Andreu
Mas-Colell of the University of Barcelona.

Solution:

(a) Using the formula for the geometric series ||Z]|> = 4/3 so ||Z|| = 2/V/3.

(b) Set & = (1,0,0,0,...) and § = (1,1/2,1/4,1/8,...), then

6 = arccos (ﬂ> = arccos <L> = arccos E _r
2] - {137 2/v/3 2 6

(c) Conmsider ¥ = (1,1/v/2,1/v/3,1/V/4,...), then
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which diverges since the harmonic series y - % diverges.




(d) Let & = (1,0,0,0,...) and ¥ = (1,1/2,1/4,1/8,...), we want the orthogonal
projection of 7 onto L = span(y). For this, we first find a vector of length one

in the direction of ¢, namely
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and now we compute
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o )= \(Tx - -Uuju= —_— —_— — T, T ... = — T, T, T, ... .
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Problem 2.
Give an algebraic proof for the triangle inequality

17+ ]| < [[@]] + [J]].

Draw a sketch.

Solution: Note that

15+ 5|2 = (7 + @) - (5 +5) = :
2/ - @) + [1]]* = (2] + [J]])?

where we have used the Cauchy-Schwarz inequality. Thus ||77 + || < ||0]| + |||

Problem 3.
(a) Consider a vector ¢ in R™, and a scalar k. Show that ||kv]| = |k|||7]|.
(b) Show that if ¥ is a nonzero vector in R™, then @ = W is a unit vector.
Solution:

(a) Note that
1k9]]* = (k) - (kv) = k*(¢ - 0) = k?[[0]|?

and thus taking square roots ||kv]| = |k|||0]| since |k| = V k2.

(b) We compute
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using what we just proved.




Problem 4(x).
Can you find a line L in R" and a vector & in R™ such that & - proj,; & is negative?
Explain, arguing algebraically.

Solution: No. Let ¥ = Zll + #- be the decomposition of ¥ into the components
parallel and perpendicular to L. In particular #ll = proj, # and #* - Zll = 0. Now

z-proj, 7= (Al +z4) &l =2 . 2+ z-. &l = |&/]]2 > 0.

Problem 5(x).
The following is one way to define the quaternions, discovered in 1843 by the Irish
mathematician Sir W. R. Hamilton. Consider the set H of all 4 x 4 matrices M of the

form

p —q —r —s
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r —s p q

s r —q p
where p, ¢, r, s are arbitrary real numbers. We can write M more succinctly in partitioned
form as -

A -B

where A and B are rotation—scaling matrices.
(a) Show that H is closed under addition: If M and N are in H, then so is M + N.

(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary
scalar, then kM is in H.

(c) The above show that H is a subspace of the linear space R***. Find a basis of H,
and thus determine the dimension of H.

Show that H is closed under multiplication: If M and N are in H, then so is M N.
Show that if M is in H, then so is M*.
For a matrix M in H, compute M7 M.

Which matrices M in H are invertible? If a matrix M in H is invertible, is M !
necessarily in H as well?

(h) If M and N are in H, does the equation M N = NM always hold?

Solution:




(a) When we add two matrices in H we obtain another matrix in H

5l |-Gl W]

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

s )18 )

(¢) The general element of H has four arbitrary constants, so H has dimension 4.
A basis is

1 000 0 -1 0 0 00 -1 O 0 0 0 -1
0100 1 0 0 O 00 0 -1 0O 0 1 O
ocoo0o1of”)0 0 0 17|10 0 0] {0 =1 0 0
0001 0 0 —-120 01 0 O 1 0 0 0

(d) When we multiply two matrices in H we obtain another matrix in H

3 ][5 &) lacsen ]

where it is useful to notice that since all A, B, C, D are rotation—scaling
matrices, they commute with each other.

(e) When we transpose a matrix in H we obtain another matrix in H

rdR ]

(f) We expand MTM as

P q T S p —q —Tr —S
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(g) If M # 0 then p* + ¢*> + 72 + s> # 0 so by the above
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and thus
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Problem 6.
Consider a consistent system AZ = b.

(a) Show that this system has a solution z in (ker A)*. Justify why an arbitrary
solution @ of the system can be written as & = 7}, + 2j, where #j, is in ker(A) and
zp is in (ker A)*.

(b) Show that the system AZ = b has only one solution in (ker A)*.

(c) If @ is the solution in (ker A)* and # is another solution of the system AZ = b,
show that ||zp|| < ||21|]. The vector zj is called the minimal solution of the linear
system AxX = b.

Solution:

(a) Since the system A7 = b is consistent, it has at least one solution Z. Let
7 = 7l + #- be the decomposition of Z into the components parallel and
perpendicular to V = ker(A). In particular Z* is in (ker(A4))* and &l = proj &

is in ker(A) so Azl = 0. Now

b= A7 =A@ + #1) = AZ + Azt = Azt

so 7y = o+ is a solution of the system in (ker(A))* and 2;, = #l is in ker(A).

(b) Suppose that AZ = b has two solutions # and @3 in (ker(A4))*. Since (ker(A))*
is a linear subspace, then 77 —a% is in (ker(A))*. Thus A(2]—23%) = A7 — Ay =

b—b=0so & — % is in ker(A). Now a7 — 27 is both in ker(A) and (ker(A))*,

but 0 is the only element in both subspaces, so ] — 25 = 0. Thus 7] = 23.

(c¢) Let 23 = :Fl” +2,% be the decomposition of z7 into the components parallel and
perpendicular to V = ker(A). Now by the first part above we have that 27" is
a solution of the system in (ker(A))*. Since 7y is also a solution of the system




in (ker(A))*, by the second part above we have 717 = #. Since 7} # & we
have 71/ # 0, so ||21/l]| > 0 and by the Pythagoras theorem

il = [l + &l > [l + ll2]| > [l

Problem 7.
Define the term minimal least-squares solution of a linear system. Explain why the
minimal least-squares solution #* of a linear system AZ = b is in (ker A)*.

Solution: We know that the least-squares solution of a linear system Ax¥ = b are
the exact solutions of the consistent linear system AT AZ = ATb. In the previous
problem we defined the term minimal solution of a consistent linear system. We
then define the minimal least-squares solution of the linear system AZ = b to be the
minimal solutions of the consistent linear system A7 AT = ATp.

We first prove that ker(A) = ker(A” A), this will be useful. Let ' be in ker(A), then
AT A7 = AT = 0 so ¥ is in ker(ATA). Let @ be in ker(ATA), then 0 = ATA¥ =
AT (A7) so A7 is in ker(AT). Now A7 is in im(A), and also in ker(AT) = (im(A))*,
but 0 is the only element in both subspaces, so A7 = 0, so @ is in ker(A).

Now, let ©* be the minimal least-squares solution of the linear system Az = b. Then

%

#* is the minimal solutions of the consistent linear system ATAZ = ATb, so by the
previous exercise Z* is in (ker(ATA))t = (ker(A))*.




