
Math 33A
Linear Algebra and Applications

Discussion for July 11-14, 2022



Problem 1.
Here is an infinite-dimensional version of Euclidean space: In the space of all infinite
sequences, consider the subspace `2 of square-summable sequences (namely, those se-
quences (x1, x2, . . . ) for which the infinite series x21 + x22 + · · · converges). For x and y
in `2, we define

||~x|| =
√
x21 + x22 + · · · and ~x · ~y = x1y1 + x2y2 + · · · .

A preliminary question is, why do ||~x|| and ~x · ~y make sense, that is, why are they finite
real numbers?

(a) Check that ~x = (1, 1/2, 1/4, 1/8, 1/16, . . . ) is in `2, and find ||~x||. Recall the formula
for the geometric series: 1 + a+ a2 + a3 + · · · = 1/(1− a) if −1 < a < 1.

(b) Find the angle between (1, 0, 0, 0, . . . ) and (1, 1/2, 1/4, 1/8, . . . ).

(c) Give an example of a sequence (x1, x2, . . . ) that converges to 0 (limn→∞ xn = 0)
but does not belong to `2.

(d) Let L be the subspace of `2 spanned by (1, 1/2, 1/4, 1/8, . . . ). Find the orthogonal
projection of (1, 0, 0, 0, . . . ) onto L.

The Hilbert space `2 was initially used mostly in physics: Werner Heisenberg’s formu-
lation of quantum mechanics is in terms of `2. Today, this space is used in many other
applications, including economics. See, for example, the work of the economist Andreu
Mas-Colell of the University of Barcelona.

Solution:

(a) Using the formula for the geometric series ||~x||2 = 4/3 so ||~x|| = 2/
√

3.

(b) Set ~x = (1, 0, 0, 0, . . . ) and ~y = (1, 1/2, 1/4, 1/8, . . . ), then

θ = arccos

(
~x · ~y

||~x|| · ||~y||

)
= arccos

(
1

2/
√

3

)
= arccos

(√
3

2

)
=
π

6
.

(c) Consider ~x = (1, 1/
√

2, 1/
√

3, 1/
√

4, . . . ), then

||~x||2 =

√
1 +

1

2
+

1

3
+

1

4
+ · · · =

√√√√ ∞∑
n=1

1

n

which diverges since the harmonic series
∑∞

n=1
1
n

diverges.



(d) Let ~x = (1, 0, 0, 0, . . . ) and ~y = (1, 1/2, 1/4, 1/8, . . . ), we want the orthogonal
projection of ~x onto L = span(~y). For this, we first find a vector of length one
in the direction of ~y, namely

~u =
~y

||~y||
=

√
3

2

(
1,

1

2
,
1

4
,
1

8
, . . .

)
and now we compute

projL(~x) = (~x · ~u)~u =

(√
3

2

) √
3

2

(
1,

1

2
,
1

4
,
1

8
, . . .

)
=

(
3

4
,
3

8
,

3

16
,

3

32
, . . .

)
.

Problem 2.
Give an algebraic proof for the triangle inequality

||~v + ~w|| ≤ ||~v||+ ||~w||.

Draw a sketch.

Solution: Note that

||~v + ~w||2 = (~v + ~w) · (~v + ~w) = ~v · ~v + ~v · ~w + ~w · ~v + ~w · ~w =

= ||~v||2 + 2(~v · ~w) + ||~w||2 ≤ ||~v||2 + 2(||~v|| · ||~w||) + ||~w||2 = (||~v||+ ||~w||)2

where we have used the Cauchy-Schwarz inequality. Thus ||~v + ~w|| ≤ ||~v||+ ||~w||.

Problem 3.

(a) Consider a vector ~v in Rn, and a scalar k. Show that ||k~v|| = |k|||~v||.
(b) Show that if ~v is a nonzero vector in Rn, then ~u = ~v

||~v|| is a unit vector.

Solution:

(a) Note that
||k~v||2 = (k~v) · (k~v) = k2(~v · ~v) = k2||~v||2

and thus taking square roots ||k~v|| = |k|||~v|| since |k| =
√
k2.

(b) We compute

||~u|| =
∣∣∣∣∣∣∣∣ ~v||~v||

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ 1

||~v||
~v

∣∣∣∣∣∣∣∣ =
1

||~v||
||~v|| = 1

using what we just proved.



Problem 4(?).
Can you find a line L in Rn and a vector ~x in Rn such that ~x · projL~x is negative?
Explain, arguing algebraically.

Solution: No. Let ~x = ~x|| + ~x⊥ be the decomposition of ~x into the components
parallel and perpendicular to L. In particular ~x|| = projL~x and ~x⊥ · ~x|| = 0. Now

~x · projL~x = (~x|| + ~x⊥) · ~x|| = ~x|| · ~x|| + ~x⊥ · ~x|| = ||~x||||2 ≥ 0.

Problem 5(?).
The following is one way to define the quaternions, discovered in 1843 by the Irish
mathematician Sir W. R. Hamilton. Consider the set H of all 4× 4 matrices M of the
form

M =


p −q −r −s
q p s −r
r −s p q
s r −q p


where p, q, r, s are arbitrary real numbers. We can write M more succinctly in partitioned
form as

M =

[
A −BT

B AT

]
where A and B are rotation–scaling matrices.

(a) Show that H is closed under addition: If M and N are in H, then so is M +N .

(b) Show that H is closed under scalar multiplication: If M is in H and k is an arbitrary
scalar, then kM is in H.

(c) The above show that H is a subspace of the linear space R4×4. Find a basis of H,
and thus determine the dimension of H.

(d) Show that H is closed under multiplication: If M and N are in H, then so is MN .

(e) Show that if M is in H, then so is MT .

(f) For a matrix M in H, compute MTM .

(g) Which matrices M in H are invertible? If a matrix M in H is invertible, is M−1

necessarily in H as well?

(h) If M and N are in H, does the equation MN = NM always hold?

Solution:



(a) When we add two matrices in H we obtain another matrix in H[
A −BT

B AT

]
+

[
C −DT

D CT

]
=

[
(A+ C) −(B +D)T

(B +D) (A+ C)T

]
.

(b) When we multiply a matrix in H by a real scalar we obtain a matrix in H

k

[
A −BT

B AT

]
=

[
(kA) −(kB)T

(kB) (kA)T

]
.

(c) The general element of H has four arbitrary constants, so H has dimension 4.
A basis is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .
(d) When we multiply two matrices in H we obtain another matrix in H[

A −BT

B AT

] [
C −DT

D CT

]
=

[
(AC −BTD) −(BC + ATD)T

(BC + ATD) (AC −BTD)T

]
where it is useful to notice that since all A, B, C, D are rotation–scaling
matrices, they commute with each other.

(e) When we transpose a matrix in H we obtain another matrix in H[
A −BT

B AT

]T
=

[
(AT ) −(−B)T

(−B) (AT )T

]
.

(f) We expand MTM as
p q r s
−q p −s r
−r s p −q
−s −r q p



p −q −r −s
q p s −r
r −s p q
s r −q p

 = (p2 + q2 + r2 + s2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
(g) If M 6= 0 then p2 + q2 + r2 + s2 6= 0 so by the above

MTM = (p2 + q2 + r2 + s2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





and thus (
1

(p2 + q2 + r2 + s2)
MT

)
M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


so

M−1 =
1

(p2 + q2 + r2 + s2)
MT =

1

(p2 + q2 + r2 + s2)


p q r s
−q p −s r
−r s p −q
−s −r q p

 .

Problem 6.
Consider a consistent system A~x = ~b.

(a) Show that this system has a solution ~x0 in (kerA)⊥. Justify why an arbitrary
solution ~x of the system can be written as ~x = ~xh + ~x0, where ~xh is in ker(A) and
~x0 is in (kerA)⊥.

(b) Show that the system A~x = ~b has only one solution in (kerA)⊥.

(c) If ~x0 is the solution in (kerA)⊥ and ~x1 is another solution of the system A~x = ~b,
show that || ~x0|| < || ~x1||. The vector ~x0 is called the minimal solution of the linear

system A~x = ~b.

Solution:

(a) Since the system A~x = ~b is consistent, it has at least one solution ~x. Let
~x = ~x|| + ~x⊥ be the decomposition of ~x into the components parallel and
perpendicular to V = ker(A). In particular ~x⊥ is in (ker(A))⊥ and ~x|| = projV ~x
is in ker(A) so A~x|| = ~0. Now

~b = A~x = A(~x|| + ~x⊥) = A~x|| + A~x⊥ = A~x⊥

so ~x0 = ~x⊥ is a solution of the system in (ker(A))⊥ and ~xh = ~x|| is in ker(A).

(b) Suppose that A~x = ~b has two solutions ~x1 and ~x2 in (ker(A))⊥. Since (ker(A))⊥

is a linear subspace, then ~x1− ~x2 is in (ker(A))⊥. Thus A( ~x1− ~x2) = A~x1−A~x2 =
~b−~b = ~0 so ~x1− ~x2 is in ker(A). Now ~x1− ~x2 is both in ker(A) and (ker(A))⊥,
but ~0 is the only element in both subspaces, so ~x1 − ~x2 = ~0. Thus ~x1 = ~x2.

(c) Let ~x1 = ~x1
||+ ~x1

⊥ be the decomposition of ~x1 into the components parallel and
perpendicular to V = ker(A). Now by the first part above we have that ~x1

⊥ is
a solution of the system in (ker(A))⊥. Since ~x0 is also a solution of the system



in (ker(A))⊥, by the second part above we have ~x1
⊥ = ~x0. Since ~x1 6= ~x0 we

have ~x1
|| 6= ~0, so || ~x1|||| > 0 and by the Pythagoras theorem

|| ~x1|| = || ~x1|| + ~x0|| ≥ || ~x1||||+ || ~x0|| > || ~x0||.

Problem 7.
Define the term minimal least-squares solution of a linear system. Explain why the
minimal least-squares solution ~x∗ of a linear system A~x = ~b is in (kerA)⊥.

Solution: We know that the least-squares solution of a linear system A~x = ~b are
the exact solutions of the consistent linear system ATA~x = AT~b. In the previous
problem we defined the term minimal solution of a consistent linear system. We
then define the minimal least-squares solution of the linear system A~x = ~b to be the
minimal solutions of the consistent linear system ATA~x = AT~b.

We first prove that ker(A) = ker(ATA), this will be useful. Let ~v be in ker(A), then
ATA~v = AT~0 = ~0 so ~v is in ker(ATA). Let ~v be in ker(ATA), then ~0 = ATA~v =

AT ( ~A~v) so A~v is in ker(AT ). Now A~v is in im(A), and also in ker(AT ) = (im(A))⊥,
but ~0 is the only element in both subspaces, so A~v = ~0, so ~v is in ker(A).

Now, let ~x∗ be the minimal least-squares solution of the linear system A~x = ~b. Then
~x∗ is the minimal solutions of the consistent linear system ATA~x = AT~b, so by the
previous exercise ~x∗ is in (ker(ATA))⊥ = (ker(A))⊥.


