Math 33A
Linear Algebra and Applications
Discussion for July 18-21, 2022

Problem 1.

The following determinant was introduced by Alexandre-Theophile Vandermonde. Consider distinct real numbers a_{0}, \ldots, a_{n}, we define the $(n+1) \times(n+1)$ matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{0} & a_{1} & \cdots & a_{n} \\
a_{0}^{2} & a_{1}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & & \vdots \\
a_{0}^{n} & a_{1}^{n} & \cdots & a_{n}^{n}
\end{array}\right] .
$$

Vandermonde showed that $\operatorname{det}(A)=\prod_{i>j}\left(a_{i}-a_{j}\right)$, the product of all differences $a_{i}-a_{j}$, where i exceeds j.
(a) Verify this formula in the case of $n=1$.
(b) Suppose the Vandermonde formula holds for $n-1$. You are asked to demonstrate it for n. Consider the function

$$
f(t)=\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
a_{0} & a_{1} & \cdots & a_{n-1} & t \\
a_{0}^{2} & a_{1}^{2} & \cdots & a_{n-1}^{2} & t^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{0}^{n} & a_{1}^{n} & \cdots & a_{n-1}^{n} & t^{n}
\end{array}\right] .
$$

Explain why $f(t)$ is a polynomial of n-th degree. Find the coefficient k of t^{n} using Vandermonde's formula for a_{0}, \ldots, a_{n-1}. Explain why $f\left(a_{0}\right)=f\left(a_{1}\right)=\cdots=$ $f\left(a_{n-1}\right)=0$. Conclude that $f(t)=k\left(t-a_{0}\right)\left(t-a_{1}\right) \cdots\left(t-a_{n-1}\right)$ for the scalar k you found above. Substitute $t=a_{n}$ to demonstrate Vandermonde's formula.

Problem 2(\star).

Find

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 9 & 16 & 25 \\
1 & 8 & 27 & 64 & 125 \\
1 & 16 & 81 & 256 & 625
\end{array}\right]
$$

using Vandermonde's formula and using the usual definition of determinant.

Problem 3.

For n distinct scalars a_{1}, \ldots, a_{n}, find

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n} & a_{2}^{n} & \cdots & a_{n}^{n}
\end{array}\right] .
$$

Problem 4.

In his groundbreaking text Ars Magna, the Italian mathematician Gerolamo Cardano explains how to solve cubic equations. In Chapter XI, he considers the following example: $x^{3}+6 x=20$.
(a) Explain why this equation has exactly one (real) solution. Here, this solution is easy to find by inspection. The point of this exercise is to show a systematic way to find it.
(b) Cardano explains his method as follows (we are using modern notation for the variables): "I take two cubes v^{3} and u^{3} whose difference shall be 20 , so that the product vu shall be 2 , that is, a third of the coefficient of the unknown x. Then, I say that $v-u$ is the value of the unknown $x "$. Show that if v and u are chosen as stated by Cardano, then $x=v-u$ is indeed the solution of the equation $x^{3}+6 x=20$.
(c) Solve the system

$$
\begin{aligned}
v^{3}-u^{3} & =20 \\
v u & =2
\end{aligned}
$$

to find u and v.
(d) Consider the equation $x^{3}+p x=q$, where p is positive. Using your previous work as a guide, show that the unique solution of this equation is

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}-\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} .
$$

Check that this solution can also be written as

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}
$$

What can go wrong when p is negative?
(e) Consider an arbitrary cubic equation $x^{3}+a x^{2}+b x+c=0$. Show that the substitution $x=t-(a / 3)$ allows you to write this equation as $t^{3}+p t=q$.

Problem 5.

Consider an $n \times n$ matrix A. A subspace V of \mathbb{R}^{n} is said to be A-invariant if $A \vec{v}$ is in V for all \vec{v} in V. Describe all the one-dimensional A-invariant subspaces of \mathbb{R}^{n} in terms of the eigenvectors of A.

Problem 6(\star).

Consider an arbitrary $n \times n$ matrix A. What is the relationship between the characteristic polynomials of A and A^{T} ? What does your answer tell you about the eigenvalues of A and A^{T} ?

Problem 7.

Suppose matrix A is similar to B. What is the relationship between the characteristic polynomials of A and B ? What does your answer tell you about the eigenvalues of A and B ?

