
Math 33A
Linear Algebra and Applications

Discussion for July 18-21, 2022



Problem 1.
The following determinant was introduced by Alexandre-Theophile Vandermonde. Con-
sider distinct real numbers a0, . . . , an, we define the (n+ 1)× (n+ 1) matrix

A =


1 1 · · · 1
a0 a1 · · · an
a20 a21 · · · a2n
...

...
...

an0 an1 · · · ann

 .

Vandermonde showed that det(A) =
∏

i>j (ai − aj), the product of all differences ai−aj,
where i exceeds j.

(a) Verify this formula in the case of n = 1.

(b) Suppose the Vandermonde formula holds for n− 1. You are asked to demonstrate
it for n. Consider the function

f(t) = det


1 1 · · · 1 1
a0 a1 · · · an−1 t
a20 a21 · · · a2n−1 t2

...
...

...
...

an0 an1 · · · ann−1 tn

 .

Explain why f(t) is a polynomial of n-th degree. Find the coefficient k of tn using
Vandermonde’s formula for a0, . . . , an−1. Explain why f(a0) = f(a1) = · · · =
f(an−1) = 0. Conclude that f(t) = k(t − a0)(t − a1) · · · (t − an−1) for the scalar k
you found above. Substitute t = an to demonstrate Vandermonde’s formula.

Solution:

(a) For n = 1 we have

A =

[
1 1
a0 a1

]
so det(A) = a1 − a0

and the formula holds.

(b) Suppose that the formula holds for n− 1, let

B =


1 1 · · · 1 1
a0 a1 · · · an−1 t
a20 a21 · · · a2n−1 t2

...
...

...
an0 an1 · · · ann−1 tn





and expand down the rightmost column. This yields

f(t) = det(B) =

=
n−1∑
i=0

(−1)i+1+n+1ti det(Bi+1,n+1) + (−1)n+1+n+1tn det(Bn+1,n+1) =

=
n−1∑
i=0

(−1)i+nti det(Bi,n) + tn
∏

n−1≥i>j

(ai − aj)

where det(Bn+1,n+1) =
∏

n−1≥i>j (ai − aj) is the Vandermonde formula for n−1.
Moreover f(a0) = · · · = f(an−1) = 0 since in each case we are computing
the determinant of a matrix that has two identical columns. Hence f(t) is a
polynomial of degree n that has the n real numbers a0, . . . , an−1 as roots, and
the coefficient of tn is

∏
n−1≥i>j (ai − aj), so

f(t) =

( ∏
n−1≥i>j

(ai − aj)

)
(t− a0) · · · (t− an−1).

Thus

det(A) = f(an) =

( ∏
n−1≥i>j

(ai − aj)

)
(an−a0) · · · (an−an−1) =

∏
n≥i>j

(ai − aj)

as desired.

Problem 2(?).
Find

det


1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625


using Vandermonde’s formula and using the usual definition of determinant.

Solution: We have a0 = 1, a1 = 2, a2 = 3, a3 = 4, a4 = 5, and

det


1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625

 =
∏

4≥i>j

(ai − aj) = 288.



Problem 3.
For n distinct scalars a1, . . . , an, find

det


a1 a2 · · · an
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 .

Solution: Factoring out one ai from the i-th column, consecutively, we find that

det


a1 a2 · · · an
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 = a1 det


1 a2 · · · an
a1 a22 · · · a2n
a21 a32 · · · a3n
...

...
...

an−11 an2 · · · ann

 =

= a1a2 det


1 1 · · · an
a1 a2 · · · a2n
a21 a22 · · · a3n
...

...
...

an−11 an−12 · · · ann

 = · · · =

= (a1 · · · an) det


1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n
...

...
...

an−11 an−12 · · · an−1n

 =

=

(
n∏

i=1

ai

)( ∏
n≥i>j

(ai − aj)

)

where we have used the Vandermonde formula for the last determinant.

Problem 4.
In his groundbreaking text Ars Magna, the Italian mathematician Gerolamo Cardano
explains how to solve cubic equations. In Chapter XI, he considers the following example:
x3 + 6x = 20.

(a) Explain why this equation has exactly one (real) solution. Here, this solution is
easy to find by inspection. The point of this exercise is to show a systematic way
to find it.

(b) Cardano explains his method as follows (we are using modern notation for the
variables): “I take two cubes v3 and u3 whose difference shall be 20, so that the



product vu shall be 2, that is, a third of the coefficient of the unknown x. Then, I say
that v−u is the value of the unknown x”. Show that if v and u are chosen as stated
by Cardano, then x = v − u is indeed the solution of the equation x3 + 6x = 20.

(c) Solve the system

v3 − u3 = 20

vu = 2

to find u and v.

(d) Consider the equation x3 + px = q, where p is positive. Using your previous work
as a guide, show that the unique solution of this equation is

x =
3

√
q

2
+

√(q
2

)2
+
(p

3

)3
− 3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
.

Check that this solution can also be written as

x =
3

√
q

2
+

√(q
2

)2
+
(p

3

)3
+

3

√
q

2
−
√(q

2

)2
+
(p

3

)3
.

What can go wrong when p is negative?

(e) Consider an arbitrary cubic equation x3 + ax2 + bx+ c = 0. Show that the substi-
tution x = t− (a/3) allows you to write this equation as t3 + pt = q.

Solution:

(a) Consider the polynomial f(x) = x3 + 6x− 20, so we have x3 + 6x = 20 if and
only if f(x) = 0. Now limx→−∞ f(x) = −∞ and limx→+∞ f(x) = +∞, so f
has at least one root. Since f ′(x) = 3x2 + 6 is always positive, f is always
increasing, so f has exactly one root.

(b) Let u and v such that v3 − u3 = 20 and uv = 2, and set x = v − u. Then

x3 + 6x = (v − u)3 + 6(v − u) = v3 − 3v2u+ 3vu2 − u3 + 6(v − u)

= v3 − u3 − 3vu(v − u) + 6(v − u) = 20− 6(v − u) + 6(v − u) = 20.

(c) From the second equation we have u = 2/v, and substituting into the first
equation gives (v3)2 − 20v3 − 8 = 0. This has solutions v3 = 10 ± 6

√
3 so

v =
3
√

10± 6
√

3. Now u3 = v3 − 20 = −10± 6
√

3 so u =
3
√
−10± 6

√
3.



(d) Let v =
3

√
q
2

+
√(

q
2

)2
+
(
p
3

)3
and u =

3

√
− q

2
+
√(

q
2

)2
+
(
p
3

)3
. Then v3−u3 = q

and vu = p/3, so since x = v − u we have

x3 + px = v3 − 3v2u+ 3vu2 − u3 + p(v − u)

= v3 − u3 − 3vu(v − u) + p(v − u) = q − p(v − u) + p(v − u) = q.

If p is negative then (q/2)+(p/3)3 may be negative, and the equation x3+px = q
may have more than one solution.

(e) Let x = t− (a/3) and assume x3 + ax2 + bx+ c = 0, then

0 = x3 + ax2 + bx+ c = (t− (a/3))3 + a(t− (a/3))2 + b(t− (a/3)) + c

= t3 + (b− (a2/3))t+ (c+ (2a3/27)− (ab/3))

and thus t3 + (b− (a2/3))t = (ab/3)− c− (2a3/27). Setting p = b− (a2/3) and
q = (ab/3)− c− (2a3/27) we have t3 + pt = q.

Problem 5.
Consider an n× n matrix A. A subspace V of Rn is said to be A-invariant if A~v is in V
for all ~v in V . Describe all the one-dimensional A-invariant subspaces of Rn in terms of
the eigenvectors of A.

Solution: Let V be a one dimensional A-invariant subspace, let ~v ∈ V . Since V
is one dimensional, we have V = span(~v). Since ~v ∈ V then A~v ∈ V so A~v = λ~v,
meaning that λ is an eigenvalue of A with associated eigenvector ~v. Thus every one
dimensional A-invariant subspace V is the span of an eigenvector of A.

We now prove the converse, namely, let ~v be an eigenvector of A of eigenvalue λ.
Then V = span(~v) is one dimensional. Moreover V is an A-invariant subspace since
any ~w ∈ V can be written as c~v a scalar multiple of ~v, and thus A(c~v) = cA~v = cλ~v
so A~w ∈ V for all ~w ∈ V . Thus the span of an eigenvector of A is a one dimensional
A-invariant subspace.

Problem 6(?).
Consider an arbitrary n×n matrix A. What is the relationship between the characteristic
polynomials of A and AT ? What does your answer tell you about the eigenvalues of A
and AT ?



Solution: They coincide. To see this, we use that the determinant of a matrix and
the determinant of its transpose coincide, so

fA(λ) = det(A− λIn) = det(A− λIn)T

= det(AT − λITn ) = det(AT − λIn) = fAT (λ).

Thus A and AT have the same eigenvalues, with the same algebraic multiplicities.

Problem 7.
Suppose matrix A is similar to B. What is the relationship between the characteristic
polynomials of A and B? What does your answer tell you about the eigenvalues of A
and B?

Solution: They coincide. To see this, we use that the determinant is multiplicative
and that the determinant of an invertible matrix is the multiplicative inverse of the
determinant of its inverse. Suppose that B = S−1AS for some invertible matrix S,
then

fB(λ) = det(B − λIn) = det(S−1AS − λIn) = det(S−1AS − λS−1InS)

= det(S−1(A− λIn)S) = det(S−1) det(A− λIn) det(S)

= det(S−1) det(S) det(A− λIn) = det(A− λIn) = fA(λ).

Thus A and B have the same eigenvalues, with the same algebraic multiplicities.


