Math 33A
Linear Algebra and Applications
Discussion for July 25-29, 2022

Problem 1.

Consider the $n \times n$ matrix

$$
J_{n}(k)=\left[\begin{array}{cccccc}
k & 1 & 0 & \cdots & 0 & 0 \\
0 & k & 1 & \cdots & 0 & 0 \\
0 & 0 & k & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & k & 1 \\
0 & 0 & 0 & \cdots & 0 & k
\end{array}\right]
$$

(with all k 's on the diagonal and 1's directly above), where k is an arbitrary constant. Find the eigenvalue(s) of $J_{n}(k)$, and determine their algebraic and geometric multiplicities.

Problem 2(\star).

Are the following matrices similar?

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Problem 3.

Consider a nonzero 3×3 matrix A such that $A^{2}=0$.
(a) Show that the image of A is a subspace of the kernel of A.
(b) Find the dimensions of the image and kernel of A.
(c) Pick a nonzero vector v_{1} in the image of A, and write $\overrightarrow{v_{1}}=A \overrightarrow{v_{2}}$ for some $\overrightarrow{v_{2}}$ in \mathbb{R}^{3}. Let $\overrightarrow{v_{3}}$ be a vector in the kernel of A that fails to be a scalar multiple of $\overrightarrow{v_{1}}$. Show that $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is a basis of \mathbb{R}^{3}.
(d) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to basis \mathfrak{B}.

Problem 4.

If A and B are two nonzero 3×3 matrices such that $A^{2}=B^{2}=0$, is A necessarily similar to B ?

Problem 5.

For the matrix

$$
A=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]
$$

find an invertible matrix S such that

$$
S^{-1} A S=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Problem 6.

Consider an $n \times n$ matrix A such that $A^{2}=0$, with $\operatorname{rank}(A)=r$ (above we have seen the case $n=3$ and $r=1$). Show that A is similar to the block matrix

$$
B=\left[\begin{array}{cccccc}
J & 0 & \cdots & 0 & \cdots & 0 \\
0 & J & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \cdots & J & \cdots & 0 \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right], \quad \text { where } \quad J=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Matrix B has r blocks of the form J along the diagonal, with all other entries being 0 . To show this, proceed as in the case above: Pick a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ of the image of A, write $\overrightarrow{v_{i}}=A \overrightarrow{w_{i}}$ for $i=1, \ldots, r$, and expand $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ to a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ of the kernel of A. Show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n}, and show that B is the matrix of $T(\vec{x})=A \vec{x}$ with respect to this basis.

Problem 7(\star).

Consider an $n \times m$ matrix A with $\operatorname{rank}(A)=m$, and a singular value decomposition $A=U \Sigma V^{T}$. Show that the least-squares solution of a linear system $A \vec{x}=\vec{b}$ can be written as

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}} .
$$

Problem 8.

Consider the 4×2 matrix

$$
A=\frac{1}{10}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]
$$

Find the least-squares solution of the linear system

$$
A \vec{x}=\vec{b} \quad \text { where } \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

Problem 9.

(a) Explain how any square matrix A can be written as $A=Q S$, where Q is orthogonal and S is symmetric positive semidefinite. This is called the polar decomposition of A.
(b) Is it possible to write $A=S_{1} Q_{1}$, where Q_{1} is orthogonal and S_{1} is symmetric positive semidefinite?

Problem 10.

Find a polar decomposition $A=Q S$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Draw a sketch showing $S(C)$ and $A(C)=Q(S(C)$), where C is the unit circle centered at the origin.

Problem 11.

Show that a singular value decomposition $A=U \Sigma V^{T}$ can be written as

$$
A=\sigma_{1}{\overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r} \overrightarrow{u_{r}}{\overrightarrow{v_{r}}}^{T} . . . \text {. } . . .}
$$

Problem 12.

Find a decomposition $A=\sigma_{1}{\overrightarrow{u_{1}}}_{\vec{v}_{1}}^{T}+\sigma_{2}{\overrightarrow{u_{2}}}_{2} \vec{v}^{T}$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

