Math 33A
Linear Algebra and Applications
Discussion for July 25-29, 2022

Problem 1.

Consider the $n \times n$ matrix

$$
J_{n}(k)=\left[\begin{array}{cccccc}
k & 1 & 0 & \cdots & 0 & 0 \\
0 & k & 1 & \cdots & 0 & 0 \\
0 & 0 & k & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & k & 1 \\
0 & 0 & 0 & \cdots & 0 & k
\end{array}\right]
$$

(with all k 's on the diagonal and 1's directly above), where k is an arbitrary constant. Find the eigenvalue(s) of $J_{n}(k)$, and determine their algebraic and geometric multiplicities.

Solution: Since $J_{n}(k)$ is upper triangular, its eigenvalues are its diagonal entries, so it has k as its single eigenvalue, with algebraic multiplicity n. Since

$$
E_{k}=\operatorname{ker}\left(J_{n}(k)-k I_{n}\right)=\operatorname{ker}\left(\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left(\overrightarrow{e_{1}}\right)
$$

then $\operatorname{dim}\left(E_{k}\right)=1$, so the geometric multiplicity of k is 1 .

Problem 2(夫).

Are the following matrices similar?

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Solution: No, since $A^{2}=0$ but $B^{2} \neq 0$. If A was similar to B, then we would have an invertible matrix S satisfying $B=S^{-1} A S$, and thus $0 \neq B^{2}=S^{-1} A^{2} S=0$ gives a contradiction.

Problem 3.

Consider a nonzero 3×3 matrix A such that $A^{2}=0$.
(a) Show that the image of A is a subspace of the kernel of A.
(b) Find the dimensions of the image and kernel of A.
(c) Pick a nonzero vector v_{1} in the image of A, and write $\overrightarrow{v_{1}}=A \overrightarrow{v_{2}}$ for some $\overrightarrow{v_{2}}$ in \mathbb{R}^{3}. Let $\overrightarrow{v_{3}}$ be a vector in the kernel of A that fails to be a scalar multiple of $\overrightarrow{v_{1}}$. Show that $\mathfrak{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is a basis of \mathbb{R}^{3}.
(d) Find the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to basis \mathfrak{B}.

Solution:

(a) Let $\vec{v} \in \operatorname{im}(A)$, so that there is a vector $\vec{w} \in \mathbb{R}^{3}$ with $\vec{v}=A \vec{w}$. Now $A \vec{v}=$ $A(A \vec{w})=A^{2} \vec{w}=0 \vec{w}=\overrightarrow{0}$, so $\vec{v} \in \operatorname{ker}(A)$. Thus $\operatorname{im}(A) \subset \operatorname{ker}(A)$.
(b) By the above, $\operatorname{dim}(\operatorname{im}(A)) \leq \operatorname{dim}(\operatorname{ker}(A))$. Since A is non zero, then we have at least one non zero vector in the image of A, so $\operatorname{dim}(\operatorname{im}(A)) \geq 1$. By the rank nullity Theorem we have $\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=3$. Thus since the dimensions are integers, the only possibility is $\operatorname{dim}(\operatorname{im}(A))=1$ and $\operatorname{dim}(\operatorname{ker}(A))=2$.
(c) We have three non zero vectors, so to prove that they are a basis of \mathbb{R}^{3} it is enough to prove that their are linearly independent. Suppose we have a relation $c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}$ for some real scalars c_{1}, c_{2}, c_{3}. Applying A to both terms of the equality we obtain $\overrightarrow{0}=c_{2} A \overrightarrow{v_{2}}=c_{2} \overrightarrow{v_{1}}$ so $c_{2}=0$, using that c_{2}, c_{3} are in $\operatorname{ker}(A)$. Thus we have $c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}$. Since $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$ are linearly independent by construction, we have $c_{2}=c_{3}=0$. Hence $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are linearly independent.
(d) We have

$$
B=\left[\begin{array}{lll}
\left.A\left(\overrightarrow{v_{1}}\right)\right]_{\mathfrak{B}} & {\left[A\left(\overrightarrow{v_{2}}\right)\right]_{\mathfrak{B}}} & \left.\left[A\left(\overrightarrow{v_{3}}\right)\right]_{\mathfrak{B}}\right]=\left[\begin{array}{lll}
{[\overrightarrow{0}]_{\mathfrak{B}}} & {\left[\overrightarrow{v_{1}}\right]_{\mathfrak{B}}} & {[\overrightarrow{0}]_{\mathfrak{B}}}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ~ . ~
\end{array}\right.
$$

Problem 4.

If A and B are two nonzero 3×3 matrices such that $A^{2}=B^{2}=0$, is A necessarily similar to B ?

Solution: Yes. Using the previous problem, we can find a basis \mathfrak{A} of \mathbb{R}^{3} such that A is similar to $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and we can also find a basis \mathfrak{B} of \mathbb{R}^{3} such that B is similar to $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Thus, since A and B are both similar to the same matrix, they are similar to each other.

Problem 5.

For the matrix

$$
A=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]
$$

find an invertible matrix S such that

$$
S^{-1} A S=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: Note that $A^{2}=0$, so we can use the method given above. We know that the vector $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in the image of A, since it is the first column of A. Thus the way we obtain it is multiplying A by the first vector of the standard basis, namely $\overrightarrow{v_{1}}=A \overrightarrow{e_{1}}$, so we set $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. For our last element of the basis, we need a vector in the kernel of A that is not a scalar multiple of $\overrightarrow{v_{1}}$. Since

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

we have the two relations $\overrightarrow{v_{2}}=-2 \overrightarrow{v_{1}}$ and $\overrightarrow{v_{3}}=\overrightarrow{v_{1}}$, giving the vectors $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ in the kernel of A. Neither of them is a scalar multiple of $\overrightarrow{v_{1}}$, so we can set $\overrightarrow{v_{3}}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$. Now

$$
\mathfrak{B}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis of R^{3} such that the linear transformation associated to A in \mathfrak{B} is $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. In particular

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 1 \\
3 & 0 & 0
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
3 & -6 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 1 \\
3 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

as desired.

Problem 6.

Consider an $n \times n$ matrix A such that $A^{2}=0$, with $\operatorname{rank}(A)=r$ (above we have seen the case $n=3$ and $r=1$). Show that A is similar to the block matrix

$$
B=\left[\begin{array}{cccccc}
J & 0 & \cdots & 0 & \cdots & 0 \\
0 & J & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \cdots & J & \cdots & 0 \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right], \quad \text { where } \quad J=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Matrix B has r blocks of the form J along the diagonal, with all other entries being 0 . To show this, proceed as in the case above: Pick a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ of the image of A, write $\overrightarrow{v_{i}}=A \overrightarrow{w_{i}}$ for $i=1, \ldots, r$, and expand $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ to a basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ of the kernel of A. Show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n}, and show that B is the matrix of $T(\vec{x})=A \vec{x}$ with respect to this basis.

Solution: To show that $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of \mathbb{R}^{n} it is enough to prove that there are n of them and that they are linearly independent.
Since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ form a basis of the image of A we have $\operatorname{dim}(\operatorname{im}(A))=r$. Since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is a basis of the kernel of A then $\operatorname{dim}(\operatorname{ker}(A))=r+m$. Thus by the rank nullity Theorem we have $n=\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=r+r+m=2 r+m$ so indeed there are n vectors in the list $\overrightarrow{v_{1}}, \overrightarrow{w_{1}}, \overrightarrow{v_{2}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{w_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$.

To see that they are linearly independent, suppose we have a linear combination $a_{1} \overrightarrow{v_{1}}+b_{1} \overrightarrow{w_{1}}+\cdots+a_{r} \overrightarrow{v_{r}}+b_{r} \overrightarrow{w_{r}}+c_{1} \overrightarrow{u_{1}}+\cdots+c_{m} \overrightarrow{u_{m}}=\overrightarrow{0}$. Applying A to both sides of the equality we obtain $b_{1} \overrightarrow{v_{1}}+\cdots+b_{r} \overrightarrow{v_{r}}=\overrightarrow{0}$ so $b_{1}=\cdots=b_{r}=0$ since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}$ are linearly independent. We then have $a_{1} \overrightarrow{v_{1}}+\cdots+a_{r} \overrightarrow{v_{r}}+c_{1} \overrightarrow{u_{1}}+\cdots+c_{m} \overrightarrow{u_{m}}=\overrightarrow{0}$, so $a_{1}=\cdots=a_{r}=c_{1}=\cdots=c_{m}=0$ since $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{r}}, \overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ are linearly independent.
What remains is to show that the matrix B is similar to A with respect to this change of basis. Note that for each $i=1, \ldots, r$ the pair $\overrightarrow{v_{i}}, \overrightarrow{w_{i}}$ will contribute with a block

$$
J=\left[\left[A\left(\overrightarrow{v_{i}}\right)\right]_{\left\{\overrightarrow{v_{i}}, \overrightarrow{w_{i}}\right\}} \quad\left[A\left(\vec{w}_{i}\right)\right]_{\left\{\overrightarrow{v_{i}}, \overrightarrow{v_{i}}\right\}}\right]=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
b_{i, i} & b_{i, i+1} \\
b_{i+1, i} & b_{i+1, i+1}
\end{array}\right]
$$

to the matrix B, these blocks having their diagonal coincide with the diagonal of B. Moreover, since $A \overrightarrow{u_{j}}=\overrightarrow{0}$ for all $j=1, \ldots, m$, all the other entries of the matrix B are zero.

Problem 7(\star).

Consider an $n \times m$ matrix A with $\operatorname{rank}(A)=m$, and a singular value decomposition
$A=U \Sigma V^{T}$. Show that the least-squares solution of a linear system $A \vec{x}=\vec{b}$ can be written as

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}} .
$$

Solution: For some vector \vec{x}^{*} to be a least-squares solution it just needs to satisfy $A \vec{x}^{*}=\operatorname{proj}_{i m(A)}(\vec{b})$. Since $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{n}}$ are an orthonormal basis of \mathbb{R}^{n} then

$$
\begin{aligned}
A \vec{x}^{*} & =A\left(\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\cdots+\frac{\vec{b} \cdot \overrightarrow{u_{m}}}{\sigma_{m}} \overrightarrow{v_{m}}\right)=\vec{b} \cdot \overrightarrow{u_{1}} \frac{A \overrightarrow{v_{1}}}{\sigma_{1}}+\cdots+\vec{b} \cdot \overrightarrow{u_{m}} \frac{A \overrightarrow{v_{m}}}{\sigma_{m}} \\
& =\left(\vec{b} \cdot \overrightarrow{u_{1}}\right) \overrightarrow{u_{1}}+\cdots+\left(\vec{b} \cdot \overrightarrow{u_{m}}\right) \overrightarrow{u_{m}}=\operatorname{proj}_{\mathrm{i}_{\mathrm{i}(A)}}(\vec{b})
\end{aligned}
$$

because $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{m}}$ is an orthonormal basis of $\operatorname{im}(A)$. Thus \vec{x}^{*} is a least-squares solution, as desired.

Problem 8.

Consider the 4×2 matrix

$$
A=\frac{1}{10}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] .
$$

Find the least-squares solution of the linear system

$$
A \vec{x}=\vec{b} \quad \text { where } \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

Solution: We can read off the decomposition of A the following

$$
\overrightarrow{u_{1}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \overrightarrow{u_{2}}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \overrightarrow{v_{1}}=\frac{1}{5}\left[\begin{array}{c}
3 \\
-4
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{5}\left[\begin{array}{c}
-4 \\
3
\end{array}\right], \sigma_{1}=2, \sigma_{2}=1
$$

so by the above we find

$$
\vec{x}^{*}=\frac{\vec{b} \cdot \overrightarrow{u_{1}}}{\sigma_{1}} \overrightarrow{v_{1}}+\frac{\vec{b} \cdot \overrightarrow{u_{2}}}{\sigma_{2}} \overrightarrow{v_{2}}=\left[\begin{array}{l}
-1 / 10 \\
-16 / 5
\end{array}\right] .
$$

Problem 9.

(a) Explain how any square matrix A can be written as $A=Q S$, where Q is orthogonal and S is symmetric positive semidefinite. This is called the polar decomposition of A.
(b) Is it possible to write $A=S_{1} Q_{1}$, where Q_{1} is orthogonal and S_{1} is symmetric positive semidefinite?

Solution:

(a) Let $A=U \Sigma V^{T}$ be the singular value decomposition of A. Set $Q=U V^{T}$ and $S=V \Sigma V^{T}$, we can rewrite

$$
A=U \Sigma V^{T}=U V^{T} V \Sigma V^{T}=Q S
$$

where Q is orthogonal because it is the product of orthogonal matrices, and S is symmetric since

$$
S^{T}=\left(V \Sigma V^{T}\right)^{T}=\left(V^{T}\right)^{T} \Sigma^{T} V^{T}=V \Sigma V^{T}
$$

because Σ only has non zero entries in its diagonal. Moreover, since S is similar to Σ then they have the same eigenvalues, and the eigenvalues of Σ are its diagonal entries, which are all positive or zero. Thus S is positive semidefinite.
(b) Yes. Set $S_{1}=U \Sigma U^{T}$ and $Q_{1}=U V^{T}$ and rewrite

$$
A=U \Sigma V^{T}=U \Sigma U^{T} U V^{T}=S_{1} Q_{1}
$$

where, as we just saw, Q_{1} and S_{1} are orthogonal and symmetric positive semidefinite.

Problem 10.

Find a polar decomposition $A=Q S$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Draw a sketch showing $S(C)$ and $A(C)=Q(S(C))$, where C is the unit circle centered at the origin.

Solution: We compute its singular value decomposition and obtain

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=U \Sigma V^{T}
$$

so

$$
\begin{aligned}
Q & =\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{cc}
4 & 3 \\
-3 & 4
\end{array}\right], \\
S & =\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right],
\end{aligned}
$$

and

$$
A=\left(\frac{1}{5}\left[\begin{array}{cc}
4 & 3 \\
-3 & 4
\end{array}\right]\right)\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right] .
$$

Problem 11.

Show that a singular value decomposition $A=U \Sigma V^{T}$ can be written as

$$
A=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r} \overrightarrow{u_{r}}{\overrightarrow{v_{r}}}^{T} .
$$

Solution: We can rewrite the singular value decomposition of A as

$$
\begin{aligned}
& A=U \Sigma V^{T}=\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \ddots & & & \\
& & \sigma_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right]\left[\begin{array}{ccc}
- & \overrightarrow{v_{1}} & - \\
\vdots & \\
- & \overrightarrow{v_{m}} & -
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{u_{1}} & \cdots & \overrightarrow{u_{n}} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & \sigma_{1} \overrightarrow{v_{1}} & - \\
\vdots \\
& \sigma_{r} \overrightarrow{v_{r}} & - \\
0 \\
\vdots & \\
0 &
\end{array}\right] \\
& =\sigma_{1}\left[\begin{array}{c}
\mid \\
\overrightarrow{u_{1}} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
-\overrightarrow{v_{1}} & -
\end{array}\right]+\cdots+\sigma_{1}\left[\begin{array}{c}
\mid \\
\overrightarrow{u_{1}} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
-\overrightarrow{v_{1}} & -
\end{array}\right]=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\cdots+\sigma_{r} \overrightarrow{u_{r}}{\overrightarrow{v_{r}}}^{T}
\end{aligned}
$$

giving the desired decomposition.

Problem 12.

Find a decomposition $A=\sigma_{1} \overrightarrow{u_{1}}{\overrightarrow{v_{1}}}^{T}+\sigma_{2} \overrightarrow{u_{2}}{\overrightarrow{v_{2}}}^{T}$ for

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]
$$

Solution: We compute its singular value decomposition and obtain

$$
A=\left[\begin{array}{cc}
6 & 2 \\
-7 & 6
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\right)\left[\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]\right)=U \Sigma V^{T} .
$$

We can read off this decomposition the following

$$
\overrightarrow{u_{1}}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \overrightarrow{u_{2}}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \overrightarrow{v_{1}}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \overrightarrow{v_{2}}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right], \sigma_{1}=10, \sigma_{2}=5
$$

so

$$
\begin{aligned}
A & =10\left(\frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
2 & -1
\end{array}\right]\right)+10\left(\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\left(\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
8 & -2 \\
-8 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] .
\end{aligned}
$$

