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Problem 1.
Consider the n× n matrix

Jn(k) =



k 1 0 · · · 0 0
0 k 1 · · · 0 0
0 0 k · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · k 1
0 0 0 · · · 0 k


(with all k’s on the diagonal and 1’s directly above), where k is an arbitrary constant.
Find the eigenvalue(s) of Jn(k), and determine their algebraic and geometric multiplici-
ties.

Solution: Since Jn(k) is upper triangular, its eigenvalues are its diagonal entries, so
it has k as its single eigenvalue, with algebraic multiplicity n. Since

Ek = ker(Jn(k)− kIn) = ker





0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0




= span(~e1)

then dim(Ek) = 1, so the geometric multiplicity of k is 1.

Problem 2(?).
Are the following matrices similar?

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

Solution: No, since A2 = 0 but B2 6= 0. If A was similar to B, then we would have
an invertible matrix S satisfying B = S−1AS, and thus 0 6= B2 = S−1A2S = 0 gives
a contradiction.

Problem 3.
Consider a nonzero 3× 3 matrix A such that A2 = 0.



(a) Show that the image of A is a subspace of the kernel of A.

(b) Find the dimensions of the image and kernel of A.

(c) Pick a nonzero vector v1 in the image of A, and write ~v1 = A~v2 for some ~v2 in R3.
Let ~v3 be a vector in the kernel of A that fails to be a scalar multiple of ~v1. Show
that B = {~v1, ~v2, ~v3} is a basis of R3.

(d) Find the matrix B of the linear transformation T (~x) = A~x with respect to basis B.

Solution:

(a) Let ~v ∈ im(A), so that there is a vector ~w ∈ R3 with ~v = A~w. Now A~v =
A(A~w) = A2 ~w = 0~w = ~0, so ~v ∈ ker(A). Thus im(A) ⊂ ker(A).

(b) By the above, dim(im(A)) ≤ dim(ker(A)). Since A is non zero, then we have
at least one non zero vector in the image of A, so dim(im(A)) ≥ 1. By the rank
nullity Theorem we have dim(im(A))+dim(ker(A)) = 3. Thus since the dimen-
sions are integers, the only possibility is dim(im(A)) = 1 and dim(ker(A)) = 2.

(c) We have three non zero vectors, so to prove that they are a basis of R3 it is
enough to prove that their are linearly independent. Suppose we have a relation
c1 ~v1 + c2 ~v2 + c3 ~v3 = ~0 for some real scalars c1, c2, c3. Applying A to both terms
of the equality we obtain ~0 = c2A~v2 = c2 ~v1 so c2 = 0, using that c2, c3 are in
ker(A). Thus we have c2 ~v2 + c3 ~v3 = ~0. Since ~v2 and ~v3 are linearly independent
by construction, we have c2 = c3 = 0. Hence ~v1, ~v2, ~v3 are linearly independent.

(d) We have

B =
[
[A(~v1)]B [A(~v2)]B [A(~v3)]B

]
=
[
[~0]B [~v1]B [~0]B

]
=

0 1 0
0 0 0
0 0 0

 .
Problem 4.

If A and B are two nonzero 3 × 3 matrices such that A2 = B2 = 0, is A necessarily
similar to B?

Solution: Yes. Using the previous problem, we can find a basis A of R3 such that A

is similar to

0 1 0
0 0 0
0 0 0

, and we can also find a basis B of R3 such that B is similar

to

0 1 0
0 0 0
0 0 0

. Thus, since A and B are both similar to the same matrix, they are

similar to each other.



Problem 5.
For the matrix

A =

1 −2 1
2 −4 2
3 −6 3

 ,
find an invertible matrix S such that

S−1AS =

0 1 0
0 0 0
0 0 0

 .

Solution: Note that A2 = 0, so we can use the method given above. We know that

the vector ~v1 =

1
2
3

 is in the image of A, since it is the first column of A. Thus the

way we obtain it is multiplying A by the first vector of the standard basis, namely

~v1 = A~e1, so we set ~v1 =

1
2
3

. For our last element of the basis, we need a vector in

the kernel of A that is not a scalar multiple of ~v1. Since

rref(A) =

1 −2 1
0 0 0
0 0 0


we have the two relations ~v2 = −2~v1 and ~v3 = ~v1, giving the vectors

2
1
0

 and

−1
0
1


in the kernel of A. Neither of them is a scalar multiple of ~v1, so we can set ~v3 =

2
1
0

.

Now

B =


1

2
3

 ,
1

0
0

 ,
2

1
0


is a basis of R3 such that the linear transformation associated to A in B is

0 1 0
0 0 0
0 0 0

.

In particular 1 1 2
2 0 1
3 0 0

−1 1 −2 1
2 −4 2
3 −6 3

1 1 2
2 0 1
3 0 0

 =

0 1 0
0 0 0
0 0 0


as desired.



Problem 6.
Consider an n × n matrix A such that A2 = 0, with rank(A) = r (above we have seen
the case n = 3 and r = 1). Show that A is similar to the block matrix

B =



J 0 · · · 0 · · · 0
0 J · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · J · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 0


, where J =

[
0 1
0 0

]
.

Matrix B has r blocks of the form J along the diagonal, with all other entries being 0.
To show this, proceed as in the case above: Pick a basis ~v1, . . . , ~vr of the image of A,
write ~vi = A~wi for i = 1, . . . , r, and expand ~v1, . . . , ~vr to a basis ~v1, . . . , ~vr, ~u1, . . . , ~um of
the kernel of A. Show that ~v1, ~w1, ~v2, ~w2, . . . , ~vr, ~wr, ~u1, . . . , ~um is a basis of Rn, and show
that B is the matrix of T (~x) = A~x with respect to this basis.

Solution: To show that ~v1, ~w1, ~v2, ~w2, . . . , ~vr, ~wr, ~u1, . . . , ~um is a basis of Rn it is
enough to prove that there are n of them and that they are linearly independent.

Since ~v1, . . . , ~vr form a basis of the image of A we have dim(im(A)) = r. Since
~v1, . . . , ~vr, ~u1, . . . , ~um is a basis of the kernel of A then dim(ker(A)) = r+m. Thus by
the rank nullity Theorem we have n = dim(im(A))+dim(ker(A)) = r+r+m = 2r+m
so indeed there are n vectors in the list ~v1, ~w1, ~v2, ~w2, . . . , ~vr, ~wr, ~u1, . . . , ~um.

To see that they are linearly independent, suppose we have a linear combination
a1 ~v1 + b1 ~w1 + · · · + ar ~vr + br ~wr + c1 ~u1 + · · · + cm ~um = ~0. Applying A to both sides
of the equality we obtain b1 ~v1 + · · · + br ~vr = ~0 so b1 = · · · = br = 0 since ~v1, . . . , ~vr
are linearly independent. We then have a1 ~v1 + · · · + ar ~vr + c1 ~u1 + · · · + cm ~um = ~0,
so a1 = · · · = ar = c1 = · · · = cm = 0 since ~v1, . . . , ~vr, ~u1, . . . , ~um are linearly
independent.

What remains is to show that the matrix B is similar to A with respect to this change
of basis. Note that for each i = 1, . . . , r the pair ~vi, ~wi will contribute with a block

J =
[
[A(~vi)]{~vi, ~wi} [A( ~wi)]{~vi, ~wi}

]
=

[
0 1
0 0

]
=

[
bi,i bi,i+1

bi+1,i bi+1,i+1

]
to the matrix B, these blocks having their diagonal coincide with the diagonal of B.
Moreover, since A~uj = ~0 for all j = 1, . . . ,m, all the other entries of the matrix B
are zero.

Problem 7(?).
Consider an n × m matrix A with rank(A) = m, and a singular value decomposition



A = UΣV T . Show that the least-squares solution of a linear system A~x = ~b can be
written as

~x∗ =
~b · ~u1
σ1

~v1 + · · ·+
~b · ~um
σm

~vm.

Solution: For some vector ~x∗ to be a least-squares solution it just needs to satisfy
A~x∗ = projim(A)(~b). Since ~u1, . . . , ~un are an orthonormal basis of Rn then

A~x∗ = A

(
~b · ~u1
σ1

~v1 + · · ·+
~b · ~um
σm

~vm

)
= ~b · ~u1

A~v1
σ1

+ · · ·+~b · ~um
A ~vm
σm

= (~b · ~u1) ~u1 + · · ·+ (~b · ~um) ~um = projim(A)(~b)

because ~u1, . . . , ~um is an orthonormal basis of im(A). Thus ~x∗ is a least-squares
solution, as desired.

Problem 8.
Consider the 4× 2 matrix

A =
1

10


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




2 0
0 1
0 0
0 0

[3 −4
4 3

]
.

Find the least-squares solution of the linear system

A~x = ~b where ~b =


1
2
3
4

 .

Solution: We can read off the decomposition of A the following

~u1 =
1

2


1
1
1
1

 , ~u2 =
1

2


1
1
−1
−1

 , ~v1 =
1

5

[
3
−4

]
, ~v2 =

1

5

[
−4
3

]
, σ1 = 2, σ2 = 1

so by the above we find

~x∗ =
~b · ~u1
σ1

~v1 +
~b · ~u2
σ2

~v2 =

[
−1/10
−16/5

]
.



Problem 9.

(a) Explain how any square matrix A can be written as A = QS, where Q is orthogonal
and S is symmetric positive semidefinite. This is called the polar decomposition of
A.

(b) Is it possible to write A = S1Q1, where Q1 is orthogonal and S1 is symmetric
positive semidefinite?

Solution:

(a) Let A = UΣV T be the singular value decomposition of A. Set Q = UV T and
S = V ΣV T , we can rewrite

A = UΣV T = UV TV ΣV T = QS

where Q is orthogonal because it is the product of orthogonal matrices, and S
is symmetric since

ST = (V ΣV T )T = (V T )TΣTV T = V ΣV T

because Σ only has non zero entries in its diagonal. Moreover, since S is similar
to Σ then they have the same eigenvalues, and the eigenvalues of Σ are its
diagonal entries, which are all positive or zero. Thus S is positive semidefinite.

(b) Yes. Set S1 = UΣUT and Q1 = UV T and rewrite

A = UΣV T = UΣUTUV T = S1Q1

where, as we just saw, Q1 and S1 are orthogonal and symmetric positive
semidefinite.

Problem 10.
Find a polar decomposition A = QS for

A =

[
6 2
−7 6

]
.

Draw a sketch showing S(C) and A(C) = Q(S(C)), where C is the unit circle centered
at the origin.

Solution: We compute its singular value decomposition and obtain

A =

[
6 2
−7 6

]
=

(
1√
5

[
1 2
−2 1

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
= UΣV T



so

Q =

(
1√
5

[
1 2
−2 1

])(
1√
5

[
2 −1
1 2

])
=

1

5

[
4 3
−3 4

]
,

S =

(
1√
5

[
2 1
−1 2

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
=

[
9 −2
−2 6

]
,

and

A =

(
1

5

[
4 3
−3 4

])[
9 −2
−2 6

]
.

Problem 11.
Show that a singular value decomposition A = UΣV T can be written as

A = σ1 ~u1 ~v1
T + · · ·+ σr ~ur ~vr

T .

Solution: We can rewrite the singular value decomposition of A as

A = UΣV T =

 | |
~u1 · · · ~un
| |




σ1
. . .

σr
0

. . .

0


— ~v1 —

...
— ~vm —



=

 | |
~u1 · · · ~un
| |




— σ1 ~v1 —
...

— σr ~vr —
0
...
0


= σ1

 |~u1
|

 [— ~v1 —
]

+ · · ·+ σ1

 |~u1
|

 [— ~v1 —
]

= σ1 ~u1 ~v1
T + · · ·+ σr ~ur ~vr

T

giving the desired decomposition.

Problem 12.
Find a decomposition A = σ1 ~u1 ~v1

T + σ2 ~u2 ~v2
T for

A =

[
6 2
−7 6

]
.



Solution: We compute its singular value decomposition and obtain

A =

[
6 2
−7 6

]
=

(
1√
5

[
1 2
−2 1

])[
10 0
0 5

](
1√
5

[
2 −1
1 2

])
= UΣV T .

We can read off this decomposition the following

~u1 =
1√
5

[
1
−2

]
, ~u2 =

1√
5

[
2
1

]
, ~v1 =

1√
5

[
2
−1

]
, ~v2 =

1√
5

[
1
2

]
, σ1 = 10, σ2 = 5

so

A = 10

(
1√
5

[
1
−2

])(
1√
5

[
2 −1

])
+ 10

(
1√
5

[
2
1

])(
1√
5

[
1 2

])
=

[
8 −2
−8 4

]
+

[
2 4
1 2

]
.


