Re: Doubts - Algebra II Class

1 message
Matt Papanikolas papanikolas@tamu.edu
Sat, Mar 11, 2017 at 9:22 PM
To: Pablo Sánchez Ocal pablosanchezocal@gmail.com
Pablo,
It might be useful to present some of the various isomorphisms in more detail. First we start with the \mathbb{Q}-vector space $A=\bigoplus_{i=1}^{\infty} \mathbb{Q}$, and then we note that we have \mathbb{Q}-vector space isomorphisms

$$
A \cong V \oplus W \cong A \oplus A
$$

where $V=\oplus_{i \text { odd }} \mathbb{Q}$ and $W=\oplus_{i}$ even \mathbb{Q}. The first isomorphism is fairly straightforward, and we will set

$$
\mu: V \stackrel{\sim}{\rightarrow} A, \quad \nu: W \stackrel{\sim}{\rightarrow} A
$$

to be the natural isomorphisms, which we use to define the second isomoprhism $\mu \oplus \nu: V \oplus W \xrightarrow{\sim} A \oplus A$. The actual definitions of μ and ν won't matter -- we just need them to be isomorphisms.

Now by way of μ we have an isomorphism of rings

$$
\tilde{\mu}: \operatorname{Hom}_{\mathbb{Q}}(A, A) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Q}}(V, V) .
$$

But let's work this out in more detail. We have

$$
\tilde{\mu}: \operatorname{Hom}_{\mathbb{Q}}(A, A) \xrightarrow{\mu^{*}} \operatorname{Hom}_{\mathbb{Q}}(V, A) \xrightarrow{\left(\mu^{-1}\right)^{*}} \operatorname{Hom}_{\mathbb{Q}}(V, V) .
$$

What this means is that if $f: A \rightarrow A$ is \mathbb{Q}-linear, then $\tilde{\mu}(f): V \rightarrow V$ is defined by

$$
\tilde{\mu}(f)=\mu^{-1} \circ f \circ \mu
$$

Ok, so now we let $R=\operatorname{Hom}_{\mathbb{Q}}(A, A)$, and we see that $\operatorname{Hom}_{\mathbb{Q}}(V, V)$ is a free left R-module via $\tilde{\mu}$ with basis $\left\{\operatorname{id}_{V}\right\}$. For $g \in R$ and $\alpha \in \operatorname{Hom}_{\mathbb{Q}}(V, V)$, under this R-operation we trace through the definitions and find

$$
g \cdot \alpha=\mu^{-1} \circ g \circ \mu \circ \alpha
$$

And in particular $\operatorname{Hom}_{\mathbb{Q}}(V, V) \cong R$ as a left R-module. Similarly we can define

$$
\tilde{\nu}: \operatorname{Hom}_{\mathbb{Q}}(A, A) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Q}}(W, W),
$$

and $\operatorname{Hom}_{\mathbb{Q}}(W, W)$ also has an induced left R-module structure and is isomorphic to R as a left R-module.
On to the problem at hand, we have a decomposition

$$
\begin{aligned}
R=\operatorname{Hom}_{\mathbb{Q}}(A, A) & \cong \operatorname{Hom}_{\mathbb{Q}}(V \oplus W, A) \\
& \cong \operatorname{Hom}_{\mathbb{Q}}(V, A) \oplus \operatorname{Hom}_{\mathbb{Q}}(W, A) \\
& \cong \operatorname{Hom}_{\mathbb{Q}}(V, V) \oplus \operatorname{Hom}_{\mathbb{Q}}(W, W)
\end{aligned}
$$

where the map $\phi: \operatorname{Hom}_{\mathbb{Q}}(A, A) \rightarrow \operatorname{Hom}_{\mathbb{Q}}(V, V) \oplus \operatorname{Hom}_{\mathbb{Q}}(W, W)$ is a \mathbb{Q}-vector space isomorphism via the maps defined above. In particular, for $f: A \rightarrow A$,

$$
\phi(f)=\left(\mu^{-1} \circ f \circ \mu, \nu^{-1} \circ g \circ \nu\right) .
$$

To show that ϕ is an isomorphism of left R-modules, we need to verify that for $g \in R$,

$$
\phi(g \circ f)=g \cdot \phi(f)
$$

but we note that

$$
\begin{aligned}
\phi(g \circ f) & =\left(\mu^{-1} \circ g \circ f \circ \mu, \nu^{-1} \circ g \circ f \circ \nu\right) \\
& =\left(g \cdot\left(\mu^{-1} \circ f \circ \mu\right), g \cdot\left(\nu^{-1} \circ f \circ \nu\right)\right) \\
& =g \cdot\left(\mu^{-1} \circ f \circ \mu, \nu^{-1} \circ f \circ \nu\right) \\
& =g \cdot \phi(f)
\end{aligned}
$$

Thus ϕ induces an isomorphism $R \cong R \oplus R$ of left R-modules.
I hope this is helpful. Enjoy the break.
Matt

On Fri, Mar 10, 2017 at 2:20 PM, Pablo Sánchez Ocal pablosanchezocal@gmail.com wrote:
Dear Dr. Papanikolas,
Today in class I asked you why:
$\pi_{i} \circ g \circ f=g \circ \pi \circ f$,
I just now tried to do it component-wise, but I found that there was no reason for them to be equal.
Why must this happen?
Thank you,
Pablo Sánchez

