Agist 2013
$\begin{aligned} & \text { (8)- } G \text { grip }, V=k^{2} \quad k=K . \\ & G \times v \longrightarrow v \\ &(g, v) \longmapsto j v\end{aligned}$
(a) We want group hamomorphisur

$$
\rho: G \longrightarrow G L_{2}(k)
$$

Take a basis $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$
for V. Now for $j_{G} G$ we
have: $\int g \cdot e_{1}=g_{i 1} \cdot e_{1}+g_{2} e_{2}$
grow, colum in $\left\{\begin{array}{l}g \cdot e_{2}=g_{2 i} \cdot e_{1}+j_{22} \cdot e_{2}\end{array}\right.$

$$
M g=\left[\begin{array}{ll}
g_{11} & g_{22} \\
g_{2 i} & g_{22}
\end{array}\right], M_{\text {action }}^{M_{g}^{\top} \text { giver }}
$$

Decompose $v \in V$ ar $v=v_{1} e_{1}+v_{2} \cdot e_{2}$ their

$$
\begin{aligned}
& g^{v}=M_{j} v \\
& \left\{M_{2}(k)\right. \text { is a map. }
\end{aligned}
$$

We can prove that: $\rho(g \cdot h)=\rho(g) \rho(h)$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
h \cdot e_{1}=h_{11} \cdot e_{1}+h_{12} e_{2} \\
h_{1} \cdot e_{2}=h_{21} \cdot e_{1}+h_{22} \cdot e_{2}
\end{array}\right. \\
& \rho(j \cdot h)=M_{g h}^{\top} \\
& \rho(g) \rho(h)=M_{g}^{\top} M_{h}^{\top}= \\
& =\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]^{\top}\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]^{\top}
\end{aligned}
$$

$$
\text { iavertible so } \rho: G \longrightarrow G L_{2}(k) \text {. }
$$

sud $\rho(1)=\mathbb{1}$. becauxe G acter on V.
(b) Suppose that $\rho(g)=\left[\begin{array}{ll}1 & \beta(g) \\ 0 & f(g)\end{array}\right]$ $\beta G \rightarrow k$,

$$
\begin{aligned}
& \begin{aligned}
g h \cdot e_{1}=g\left(h \cdot e_{1}\right) & =\left(g_{1} h_{11}+g_{12} h_{21}+h_{21} \cdot e_{1}\right) e_{2} \\
g^{h} \cdot e_{2}=g\left(h \cdot e_{2}\right) & =\left(g_{21} h_{11}+g_{2} h_{2} h_{2}\right) e_{1} \\
& +\left(g_{21} h_{1_{2}}+g_{n} n_{21}\right) e_{2}
\end{aligned} \\
& \mathbb{1}=\rho(1)=\rho\left(g g^{-1}\right)=\rho(g) \rho\left(g^{-1}\right) \\
& 11=\rho(1)=\rho\left(g^{-1} g\right)=\rho\left(g^{-1}\right) \rho(g) \\
& \left.\rho^{(} j^{-1}\right)=\rho(g)^{-1} \cdot \int_{0} \rho(g) \text { is }
\end{aligned}
$$

$\delta: G \rightarrow k^{x}$. Shaw V have a 11 invanement subspace.
Nate: $\left(\rho(g)\left[\begin{array}{l}\alpha \\ 0\end{array}\right]=\left[\begin{array}{ll}1 & \beta(g) \\ 0 & \delta(g)\end{array}\right]\left[\begin{array}{l}\alpha \\ 0\end{array}\right]=\left[\begin{array}{l}\alpha \\ 0\end{array}\right]\right.$
So $\rho(g)$ Keeps $\underbrace{1} \dot{\alpha} \cdot e_{1}: \alpha \in k\}$ invariant: is a ID immiciant of V. sulu pace W
for all $g \in G ; \rho(g)(W) \subseteq W$
(c) Slow that δ is a gap homomorphism and that $\beta(g h)=\beta(h)+\beta(g) \delta(h)$.
Since: $\left[\begin{array}{ll}1 & \beta(g h) \\ 0 & \delta(g h)\end{array}\right]=\rho(g h)=\rho(g) \rho(h)=$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & \beta(g) \\
0 & \delta(g)
\end{array}\right]\left[\begin{array}{ll}
1 & \beta(h) \\
0 & \delta(h)
\end{array}\right]= \\
& =\left[\begin{array}{ll}
1 & \beta(h)+\beta(g) \\
0 & \delta(h) \\
0 & \delta(g): \delta(h)
\end{array}\right] \quad \text { Compare }
\end{aligned}
$$

(d) If $\beta(g h)=\beta(h)+\beta(g) f(h)$ and $v=\left[\begin{array}{l}a \\ b\end{array}\right] \in V$ with $\delta \neq 0$. Take $U=k \cdot v$. Suppose $\rho(g)(U) \leq U$ for all $g \in G$:
Show there is sine $c \in R$ so that for all $g \in(B: \beta(g)=\delta(g) c-c$.
Check that this β satisfies the condition in (c).

$$
\rho(\eta) \cdot v=\alpha \cdot v *
$$

Rank: If we wale over sine curial action $\left[\begin{array}{ll}\alpha(g) & \beta(g) \\ \gamma^{\prime}(g) & \delta(g)\end{array}\right]$ the.$~$ conclusion is
nt tale
$\alpha(g)=2=\delta(g)$,

$$
\beta(g)=0=\gamma(g) ;
$$

now $0=\beta(g)=\delta(g) \cdot c-c=2 \cdot c-c=$
*

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & \beta(g) \\
0 & \delta(g)
\end{array}\right]\left[\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a+\beta(g) \cdot b \\
\delta(g) \cdot b
\end{array}\right]=\left[\begin{array}{c}
\alpha \cdot a \\
\alpha \cdot b
\end{array}\right]\right.} \\
& \Rightarrow \delta(g) b=\alpha \cdot b \Rightarrow \delta(g)=\alpha: \\
& a+\beta(g) b=\alpha a \Rightarrow \beta(g) b=(\alpha-1) a \\
& \Rightarrow \beta(g)=(\alpha-1) \frac{a}{b} \text { since } b \neq 0 \\
& =(\delta(g)-1) \frac{a}{b}
\end{aligned}
$$

So set $c:=\frac{a}{a}, \beta$ decomposer ar

To cheile that $\beta \operatorname{sigh})=\beta(h)+p(g) \delta(h)$ desired

$$
\begin{aligned}
\beta(g h) & =\delta(g h) c-c=\delta(g) \delta(h) c-c \\
\beta(h)+\beta(g) \delta(h) & =\delta(h) c-c+(\delta(g) c-c) \delta(h)= \\
& =\delta(h) c-c+\delta(g) \delta(h) c-\delta(h) c= \\
& =\delta(g) \delta(h) c-c\}
\end{aligned}
$$

Jamar? 2014:
(1) - A cheactersitic govit is urrual.

Ygiven b. conjugation is an amburphlion so : $g^{\prime} H g=\varphi(H)=H$, anj H that is chanctristic munt be normal.
Supuse $G=H K$ with H, K chearturitic, $H \cap k=$ Seh. Show $\operatorname{Ant}(t) \cong \operatorname{Ant}(H) \times \operatorname{Aar}(k)$.

H, K are the chemactristic, so both are noruarl.

Reogninition Tw: $\tilde{H}, \widetilde{k} \Delta \widetilde{F}, \tilde{H} \cap \tilde{k}=$ hel and $\langle\tilde{H K}\rangle=\mathcal{F}$, thim $\tilde{G} \cong \tilde{H} \times \tilde{K}$

We wout to ajpl this to
Hwerford
$\tilde{H}=\operatorname{Aut}(H), \tilde{k}=\operatorname{Amt}(k)$,
$\sigma=\operatorname{Ant}(F)$
A : a artmenofhisur of G leaving k fix
$A \leq \operatorname{Ant}(t)$
Claim: $A \cong \Delta n t(t)$.

$$
\sigma \longmapsto\left(\begin{array}{cc}
\varphi: H & \longrightarrow H \\
h & \longmapsto \\
& \sigma(h)
\end{array}\right)
$$

this is well difined:
Srijutive: everig $\phi \in \operatorname{Ant}(H)$ ran de
usine $G \cong H \times K$
sen ar $\$ \in A$ b inst
leaving $\left.^{\phi}\right|_{k}=i d_{k}$
Injective: if $\sigma, \tau \in A$ with $\sigma(H)=$ $\tau(H)$ then $\left.\sigma\right|_{H}=\left.\tau\right|_{H}$ and

$$
\sigma_{k}=\left.\tau\right|_{k} \text { so }\left.\sigma\right|_{G}=\left.\tau\right|_{G}
$$

$B:=$ autimorphisive of G leaning H fix:

$$
B \leq \operatorname{Ant}(t) \text {. }
$$

Claim: $B \cong$ Ant (K), av before.
Na, we pare $A, B \leq A_{\text {at }}(G)$ sariiff Lignthesis of the Recognition. The rem. $A \cap B=S e\}$ is dear.
$A \triangle \operatorname{Aut}(G)$ became for $\varphi \in \operatorname{don}(\theta)$ and $\psi \in A$, than: $\varphi \psi \varphi^{-1}(h k)=$

$$
\begin{aligned}
& =\psi \psi\left(\psi(h) \psi^{\varphi(k)}\right)= \\
& =\varphi(\psi \varphi^{-1} \underbrace{\varphi^{-1}}_{\underbrace{(h)} \underbrace{\varphi^{-1}(k)}_{\varphi^{-1}(k)}} \\
& =\varphi(\psi \varphi^{-1}(h) \underbrace{\varphi^{-1}(k)}_{\varphi \varphi^{-1}(k)}=\varphi \psi \varphi^{-1}(h) k
\end{aligned}
$$

If h : e them $\varphi \psi \varphi^{-1}$ fixer k, aus it s an monarchism of G so $\varphi \psi \varphi^{-1} \in A$ so $A \subseteq A+c(G)$.
gimimerl? $D \triangleq A$ at (G)
Now : pick $\varphi \in \operatorname{Ant}(G) ; \varphi I_{H} \in \operatorname{Att}(H)$,
$\sin _{n} \varphi_{n} \mapsto \varphi_{1}$ Similar $\varphi_{n} \mapsto \varphi_{n}$.
$\operatorname{Ant}(\hat{1}) \hat{A} \quad \hat{A} \hat{A}(k) \hat{B}$
We will show $\varphi=\varphi_{1} \cdot \varphi_{2}$

Pick $u k \in H k=G$, wow:

$$
\begin{aligned}
& \varphi_{1} \cdot \varphi_{2}(h k)=\varphi_{1}(\underbrace{\varphi_{2}(h)}_{h} \varphi_{2}(k))= \\
& =\varphi_{1}\left(h \varphi_{2}(k)\right)=\varphi_{1}(h) \underbrace{\varphi_{1} \varphi_{2}(k)}_{\varphi_{2}(k)}= \\
& =\varphi_{1}(h) \varphi_{2}(k)=\varphi(h) \varphi(k)= \\
& =\varphi(h k) .
\end{aligned}
$$

Thur $\operatorname{Aut}(G)=\langle A D\rangle=A \times B$

Affernative: build isomorphism

$$
\begin{aligned}
\operatorname{Aut}(f) & \cong \operatorname{Ant}(H) \times \operatorname{Ant}(k) \\
\sigma & \longmapsto\left(\left.\sigma\right|_{n} ; \sigma \mid k\right) .
\end{aligned}
$$

this heavily wier $H \times k=G$. Mk =
(2). Shis that G of $|G|=2314$ har a insunal codie sisproup of index 2 .

Clasiff all gonss of arder 2019 .
3) Splow 3 we nust have:
$u_{53}=1$, call it H, it will be wsunal
$u_{19}=1$, call it k, if will be wormal
Nons $H \cap K=b e y$. Thin $H K=H \times K$ and
$|H \times K|=19.53=1007$. Morevier $[G: H \times k]=2$

Since 19,53 are oprime, $x_{19} \times x_{53} \cong$ $\cong \mathcal{X}_{1007}$ and $H \times k$ is eqdic of index 2 thins norual.

Rink: $[f: G]$ imalat prive dividing $[G \mid$ weane $\bar{G} \Delta G$

Aside : Hxk, H inst commitative K comintative
$H \times K$ har $(1, k)$ ar comentation mojoup.
$H \times K /(1, k) \cong H$ nst commutative.
D_{8}, and out $\rightarrow x_{n}$

Clasifing thein: G unit have sime egclic urened monjoup. F of ardes 1007 So jiven an 2 - $\delta \gamma^{\text {oow }}$ and goup L, we hive that $G \cong F x_{\phi} L$
big clasiticication tho rem
We know $F \cong x_{19} \times x_{53}, L \cong x_{2}$, so

$$
\begin{aligned}
& \phi: x_{2}=\operatorname{Ant}\left(x_{19} \times x_{53}\right) \cong \\
& \cong \operatorname{Ant}\left(x_{12}\right) \times \sin \left(x_{53}\right) \cong \\
& \cong x_{18} \times x_{52}
\end{aligned}
$$

ϕ mist preserve the order of the elements, so $I \in x_{2}$ mst be rent to $\phi(i)$ of order two The options are q $\in x_{18}, 26 \in x_{52}$, so we have:
(i) ϕ is trinal (Sends everifhig to x wo r)
(ii) $\mid \longmapsto(9,0)$
(iii) $1 \xrightarrow{\longrightarrow}(0,26)$.
(iv) $1 \longmapsto(9,26)$.

So for each L we have four aptiour for ϕ, so four $F \times \not L \cong G$.
(5). A fimit integal domain is a ficd

Let D a frid, gick $a \in D$ nut zeo Lok at
$\left.D \supseteq 4 a^{n}: n \in \mathbb{N}\right\}$, we have $a^{n}=a^{m}$ bj finitinus.
frite

$$
n \neq m
$$

WLoG lef $n>m$, them $a^{n-m}=1$, to:

$$
a:\left(a^{n-m-1}\right)=1
$$

where $n-m \in \mathbb{N} \backslash 404$ so $n-m-1 \in \mathbb{N}$.
Hevice $a^{n-m-1} \in D$ is a^{-1}
Prove thit wer rime ideal in a finite commentetive sing is maximal.
Let R be fuik comm. rin, P rime ideal.
Thein R / P is firite interal dowain.
So by the abine $\frac{R}{P}$ o a fild, so P is
(4) - R conutative ing. Prove $H_{\text {mip }}(A$, ?) is
left exact.

$$
\begin{aligned}
& 0 \longrightarrow L \xrightarrow{c} M \xrightarrow{f} N . \operatorname{Anp} H_{\operatorname{lom}_{R}}(A, ?): \\
& 0 \rightarrow \operatorname{Hom}_{R}(A, L) \xrightarrow{e^{*}} \operatorname{Hom}_{R}(A, M) \xrightarrow{f_{*}} \operatorname{Hom}_{L}(A, N) \\
& \varphi: A \rightarrow L \quad e_{*}(\varphi) \cdot A \rightarrow M \\
& e_{*}(Y): A \xrightarrow{\varphi} L \xrightarrow{e} M \\
& e_{*}:=e^{\circ} \text { ? }
\end{aligned}
$$

To show that this second resume c is exact we need : (i) $\operatorname{Ver}\left(e_{*}\right)=$ hot, i.e. ex. infective.
(ii) $\operatorname{Ve}\left(f_{*}\right)=\operatorname{im}\left(e_{x}\right)$
(i) Suppl $\phi \in \operatorname{ker}\left(e_{*}\right), \phi \vdots A \rightarrow L$, with $0=e_{x}(\phi)=e_{0} \phi: A \longrightarrow M$. Take $a \in A$, hoist : $\quad 0=e \cdot \phi(a)=e(\phi(a))$, sine e is infective. $\phi(a)=0$, so $\phi=0$.
(ii) in $\left(e_{*}\right) \subseteq \operatorname{ver}\left(f_{*}\right)$.
$h: A \rightarrow M$, $h \in \operatorname{im}\left(e_{*}\right)$, so there is
$g: A \rightarrow L$ with $\operatorname{eog}=h$
We $k_{\text {was }} \operatorname{in}(e) \leq k_{w}(f)$, so amp ing

$$
\begin{aligned}
& f_{+}(h)=f \circ h_{h}=f \circ e \circ g=\underbrace{(e \circ g)}_{\text {nim }(e)}=0 \\
& \operatorname{Kin}\left(f_{x}\right) \subseteq \operatorname{im}\left(e_{x}\right) \text {. } \\
& j \in \operatorname{Ker}(\mid x) ;, A \rightarrow M \text { and } f \circ g=0
\end{aligned}
$$

Since $\operatorname{kur}(f) \subseteq \sin (e)$, for all ac A we have $g(a) \in \operatorname{im}(e)$, so there is ~ $b \in L$ with $g(a)=e(b)$:
We out to define

$$
\begin{aligned}
& e_{x}(h)=g \\
& e \cdot h=g \sim e(h(a))=g(a)=e(b) \\
& h: A \rightarrow L \\
& a \rightarrow b
\end{aligned}
$$

Define $h: A \rightarrow L$ This is well $a \longmapsto b$
defined because e injective wear that if there are b, l^{\prime} with $e(b)=g(a)=e(b)$ then $b=!$ '.

Claim: h is a morehism. Supple $a \in A$, thin $g(a)=e(b)$ for some $b \in L$. Now pick $r \in R$ then: $g(r \cdot a)=r \cdot g(a)=r \cdot e(b)=e(r \cdot b)$

$$
\Rightarrow h(\cdot \cdot \cdot a)=r \cdot b=r \cdot h(a) .
$$

$$
\begin{aligned}
& \text { Sup ole } a_{1}, a_{2} \in A \text { with } g\left(a_{1}\right)=e\left(b_{1}\right), \\
& g\left(a_{2}\right)=e\left(b_{2}\right) \\
& g\left(a_{1}+a_{2}\right)=g\left(a_{1}\right)+g\left(a_{2}\right)=c\left(b_{1}\right)+e\left(s_{2}\right)=c\left(s_{1}+b_{2}\right) \\
& \Rightarrow h\left(a_{1}+a_{2}\right)=b_{1}+b_{2}=h\left(a_{1}\right)+h\left(a_{2}\right)
\end{aligned}
$$

Now indeed: $c \cdot h(a)=c(b)=g(a)$ so $g \in \operatorname{in}\left(e_{*}\right)$

Prove Home $(?, A)$ is left exact:

$$
\begin{aligned}
& 2
\end{aligned}
$$

$\operatorname{ker}\left(f^{*}\right) \subseteq \operatorname{in}\left(g^{*}\right): \varphi: N \rightarrow A$ such that $\varphi \cdot f=0$.
Nate: $\operatorname{ke}(g) \leq \operatorname{kur}(\varphi) \subseteq N$, become if $u \in \operatorname{kea}(g)$
then $n \in \operatorname{im}(f)=\operatorname{Ver}(g)$, so the is $m \in M$
with $f(m)=n$, so $\varphi(u)=\varphi(f(m))=0$.
So $\varphi: N \longrightarrow A$ folio through the

P becanfe $g: N \rightarrow P$ and is subjective (I.I.T.)
Then: $\phi: P \longrightarrow A$ can be defined
ar: $\phi(\underline{q}): \bar{\varphi}(n+\operatorname{ker}(g))$ where $p=\bar{u}$
This giver ϕ is a morphism for free.
Claim: $\delta^{*}(\phi)=\varphi$.

$$
\begin{aligned}
g^{*}(\phi)(u) & =\phi \circ g(u)=\phi(n+\operatorname{ker}(g))= \\
& =\phi(p)=\bar{\varphi}(u+\operatorname{ker}(g))=\varphi(u) .
\end{aligned}
$$

(5)- For the future.
(6) IF finite fiell with 1^{4} diments
(a) Why wery elment of $F x$ a a at if $x^{n}-x$ 0 is a ost if $x^{p^{n}-x}$.
Take $a \in \mathbb{F} \backslash 400$, them $a \in \mathbb{F}^{x}$ the juy of miks shich hav oder $p^{n}-1$ Alonce:
(4) $a a^{p^{-1}}=1$ so $a a^{4}=a$ so a is not
(b) If $c \mid p^{n}-1$ them all the rots of x^{r-1} live in \mathbb{F}.

Suppose a is a not of $x^{r}-1$, so $a^{r}=1$. Now s $r\left(p^{n}-1\right.$, so there is d with $r d=p^{n}$ $1=1^{d}=\left(a^{r}\right)^{d}=a^{\text {rd }}=a^{\text {rd }}=a^{p^{n}-1} \cdot \int_{0}$ dh e cols of $x^{n}-1$ are also roots of $x^{n}-x$. So b) pat (1) the rots of $x^{r}-1$ lime in (IF.
(8) If have ${ }^{4}$ events, and vergove of theme
is a not of $x 9^{4}-x$: Bat $x 9^{u}-x$ her at inst p^{u} roots So the rooter of $x^{y^{u}-x}$ are exact) the elinenits in \mathcal{F} :
(c) \int how that $x^{4}+1$ is reducible over any finite field.
$R_{m b l} x^{4}+i=x^{4}-(-1)$, in th we see that -1
is aluangs a square, we are done.
If $x^{4}+1$ a redmicile over IFp. p prime, it $\overline{3}$ also reducile over. \mathbb{F}_{p}. for all uciN. (becouse $\mathbb{F}_{p} \subseteq \mathbb{F}_{p}{ }^{n}$ is its grime sumficd)
If $p=2$ then $x^{4}+1=(x+1)^{4}$, redmide our \mathbb{F}_{2}.
"Thinking techniguer": we are fod to use $i^{2}-1$: The wap of going fom p to $p^{2}:$; lakeing at the units of $\mathbb{F}_{p^{2}}$:
Conider the fild extusgon $\mathbb{F}_{p}{ }^{2}$. We have $\mathbb{F}_{p^{2}}{ }^{x}$ hei $p^{2}-1$ elcunts. Natice $8 / p^{2}-1$, and $\mathbb{F}_{p^{2}}^{x}$ is ipdic. So there is a mit acc \mathbb{F}_{p}^{x}. with $|u|=8$: In arctimalae sime $x^{8}-1=\left(x^{4}-1\right)\left(x^{4}+1\right)$, we have n a orot of $x^{4}+1$. So x is alchaic over
$\mathbb{F}_{p} \subseteq \mathbb{F}_{p}^{2}$, so $\mathbb{F}_{p}(u) \subseteq \mathbb{F}_{p}: T \mathbb{T h u s ~}\left[\mathbb{F}_{p}(n): \mathbb{F}_{p}\right] \leq$
$\leq\left[\mathbb{F}_{2}^{2}(x): \mathbb{F}_{p}\right]=2$. The minimal iorednidle pirpionial
Himg infore v.l:6. f of this extacsion hive dy gee. 2 or lav. (f ant zuor)
Since in s a ont of $x^{4}+1$, we must have f) $x^{4}+1$, so $x^{4}+1$ is divirible by an iverducisle plpunial with colffrimets in IFp. So $x^{4}+1$ x vodmidle.

