August 2013 $(8) - G_{pop}, V = k^2$ R = K. $G \times V \longrightarrow V$ $(q, w) \mapsto (q, w)$ (a) We want goup homomorphism $\int_{a}^{b} (G \longrightarrow GL_{2}(k))$ Take a Sasis $e_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for V. Now for JEG we have: $(\begin{array}{c} g, e \end{array}) = g_{ij} \cdot e_{j} + g_{iz} \cdot e_{z}$ g_{row} , column $g_{row} = g_{2i} e_{i} + f_{22} e_{2}$ $M_{g} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}, M_{g} g_{1} ver$ action

Decompose $v \in V$ ar $v = v_i \cdot e_i + v_2 \cdot e_2$ then qv = Mjv $\bigcap: G \longrightarrow M_2(k)$ is a mep. We can prove that $: \rho(g,h) = \rho(g) \cdot \rho(h).$ $h_{k} \cdot e_{1} = h_{k} \cdot e_{1} + h_{2} e_{2}$ $h = e_2 = h_{2i} e_1 + h_{22} e_2$ (g,h) = Mgh $\rho(g)\rho(h) = M_g^T M_h^T =$ $\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$

 $gh \cdot e_{1} = g(h \cdot e_{1}) = (g_{11}h_{11} + g_{12}h_{21}) \cdot e_{1}$ $= g(h \cdot e_{1}) = (g_{21}h_{11} + g_{12}h_{22}) \cdot e_{1}$ $= g(h \cdot e_{2}) = (g_{21}h_{11} + g_{22}h_{21}) \cdot e_{1}$ $+ (g_{21}h_{12} + g_{21}h_{22}) \cdot e_{2}$ M = P(1) = P(1) = P(1) = P(1) $\boxed{1} = \rho(1) = \rho(\overline{g}' g) = \rho(\overline{g}') \rho(g)$ $\rightarrow \rho(j') = \rho(j)' \cdot \int_{0}^{1} \rho(j) is$ invertible so p: G -> EL2(k). And p(1) = 11. Je course G actor $\binom{9}{3} = \begin{bmatrix} 1 & \beta(g) \\ 0 & \beta(g) \end{bmatrix}$ (5) Suppose that $\beta: G \longrightarrow R$

f: G -> k^x. Show V how a 13 invariant subspace. $\begin{pmatrix} 2 & (q) \\ 0 \end{pmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & \beta(q) \\ 0 & \beta(q) \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$ Nole so p(g) keeps ja. e. KEK invaliant. is a 1D invasiant of V. Sulzace W. for all gef; p(g) (w) s n (c) Show that I is a group humanorphism and that p(gh) = p(h) + p(g)S(h). Since $\left[\begin{array}{c} 1 \\ \end{array} \right] \left[\begin{array}{c} p(qh) \\ p(qh) \\ \end{array} \right] = \left[\begin{array}{c$ o S(gh)

 $\frac{1}{2} = \frac{1}{2} \frac{$ Compare F(h) + p(q) S(h)entrier: $O = \frac{1}{2} \frac{S(q)}{S(k)}$ (d) $Tf \beta(qh) = \beta(h) + \beta(q) \xi(h)$ and v= [] eV with Sto. Take U= R.v. $\int u_{g} \log e^{(g)}(U) = U$ for all ge G: Show there is some $c \in k$ so that for all $g \in G$: B(g) = S(g) = -c. Chuck that this B satisfies the condition $\binom{2}{3}\cdot \mathcal{V} = \mathcal{A}\cdot \mathcal{V}$ Fulther assume that $p(q) = \begin{bmatrix} 1 & \beta(q) \\ 0 & 0 \end{bmatrix}$

() (a) Ruck: If we wolk over some $\beta(g) = 0 = \beta(g);$ $(100) = \beta(q) = \delta(q) \cdot c - c = 2 \cdot c - c =$ $\begin{array}{c} \overbrace{\mathbf{x}}\\ \overbrace{\mathbf{x}}} \overbrace{\mathbf{x}}\\ \overbrace{\mathbf{x}}} \overbrace{\mathbf{x}} \overbrace{\underline{x}} \overbrace{\underline{x$ \Rightarrow $\delta(g)b = \lambda b \Rightarrow \delta(g) = \lambda$. $a + \beta(g)b = da =) \beta(g)b = (d-1)a$ =) $\beta(g) = (\alpha - i) - \frac{\alpha}{5}$ Since $5 \neq 0$. $= \left(\left(\left(\left(q \right) \right) - 1 \right) \right) \frac{\alpha}{b}$ Lo set c:= ~, B decomposer ar

To check that p(gh) = p(h) + p(g) S(h) : $p(gh) = \delta(gh) c - c = \delta(g) \delta(h) c - c$ $\beta(h) + \beta(g) \delta(h) = \delta(h) c - c + (\delta(g) c - c) \delta(h) =$ $= \int (h) c - c + \delta(g) \int (h) c - \delta(h) c =$ = $\int (g) \int (h) c - c$ Jamar 7 2014: () - A cheacteristic group is normal. l'égiven 57 conjugation is an antour phise so: 5'Hg = 4(H) = H, aug H Hunt is characteristic must be normal. Surver G = HK with H, K cheautinistic, $H \cap K = 5e_1$. Show $Ant(G) \cong Ant(H) \times Ant(K)$.

H, K are both characteristic, so both are wormont. Recognition Thu: A, R 4 G, Hnk=sel and $\langle \widehat{H}\widehat{K} \rangle = \widehat{C}$, thus $\widehat{C} \cong \widehat{H} \times \widehat{K}$. Huyerfold 7.61 We want to apply this to $\widetilde{H} = \widetilde{H}(H), \ \widetilde{K} = \widetilde{H}(K),$ Coulley 8.7. G== Ant (G) A := automogluisner of G leaving K fix. $A \leq Ant(c)$ Clorius: $A \cong Ant(H)$. $\begin{array}{cccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$ Ahis is well defined. Using G=HXK. seen av DEAL just

leaving \overline{P} = id K Injective: if o, ZEA with o(H)= then $\sigma|_{H} = \tau|_{H}$ and e = T = K so e = T = C = CB := automorphisur of G leaving H fix. $B \leq Ant(G)$ Claim: B = Ant (K); av before. Now, we prove A, B - Aut (6) satisfy hyporthesis of the Recognition Theorem. ANB= 4e7 is dear. A 4 Ant (6) because for 46 abril (6) and YEA, then: YYY(hk)=

 $= \mathcal{U} \mathcal{U} (\mathcal{U} (h) \mathcal{U} (k)) =$ $= \Psi \left(\Psi \Psi^{-1} (h) \Psi \Psi^{-1} (h) \right) =$ e K (k) $= \psi(\psi\psi(\psi'(h)\psi'(b)) = \psi\psi(\psi(h)k)$ $\psi \psi'(k) = k$ If h=e then eye fixer K, and it is an automoghism of G so $\gamma \gamma \gamma' \in A$ So A = Ant(G). Similarly D= And (G). Now gick le Ant (F); 414 E Ast(H), sang of ingly of ingles by the set of the se Ant(H) Ar Ant(k) B We will show $y = y_1 \circ y_2$

Pick hkeHk=6, mont $\Psi_{i} \circ \Psi_{2}(hk) = \Psi_{i}\left(\Psi_{2}(h)\Psi_{1}(k)\right) =$ $= \left(\left(l_{1} \left(l_{2} \left(l_{2} \right) \right) \right) = \left(l_{1} \left(l_{1} \right) \left(l_{2} \left(l_{2} \right) \right) \right) = \left(l_{1} \left(l_{2} \right) \left(l_{2} \left(l_{2} \right) \right) \right)$ $= \mathcal{L}(h) \mathcal{L}(k) = \mathcal{L}(h) \mathcal{L}(k) =$ = 'q'(lik). Thur Ant (G) = (AO) = A×B recognition Ausrem Alternative: build 5 mosphism $Aut(G) \cong Aut(H) \times Aut(k)$ $\sigma \longrightarrow (\sigma|_{H}, \sigma|_{K})$ this heavily user Hxk = 6. Hk = (2) - Show that 6 of 161 = 2014 hora wormal cyclic subgroup of index 2.

Classify all groups of order 2014. B7 37lous 3 we must have : N53 =1, call it H, it will be usting! Mig = 1, call if K, if will be normal. Nons HAK= Sel. Then HK = H×K and |Hxk| = 19.53 = 1007. Moreover $[G:H\times k]=2.$ Since 19,53 are worsine, $\mathcal{R}_{19} \times \mathcal{R}_{53} \cong$ = 72 1007 and Hxk is cyclic of index 2. Aus normal. Ruck: [6:7] smallert poine dividing [6] means G 2G.

.

Asside : HXK, Hust commutative k commutative HXK hav (1, K) av commtative HXK (1, k) = H not commetative. Dy, med out by Ny. Classifying them: Gunst have some cyclic notrued subjourp F of order 1007. So given any 2-S-Jow subfroup L, we have that G=FXZ

sig classification thus rem We know $F \cong \mathcal{N}_{19} \times \mathcal{X}_{53}$, $L \cong \mathcal{N}_{2}$, so $\phi: \mathcal{R}_2 \longrightarrow \operatorname{Aut}(\mathcal{R}_{19} \times \mathcal{R}_{53}) \cong$ \cong Sub (Z_{F1}) × Sub (Z_{53}) \cong $Z_{18} \times Z_{52}$ \$ must preserve the order of the elements, so IE Rz must se sent to \$(i) of order two. The options are 9 E Niz, 26 E Nizz, co we have: (i) \$ is think (sends everything to zero) $(ii) \qquad (9, 0)$ So for each L we have four optioner for \mathfrak{P} , so four $F \times \mathfrak{P} L \cong G$

3) - A finite integral domain 3 on Field. Let Da find, pick aED ust zero. Look at D2hannenni, we have a = an by finitiven. n+m finite WLOG let n>m, then a =1, 10 $\alpha \cdot \left(\alpha^{-1} \right) = 1$ where n-m E M No 4 so n-m-1 E M. Hence a ED is a. Prove that was prime ideal in a finite commutative ring is maximal. het R be finite comm. ny, P prime ideal. Then K/p is finite integral domain. do 57 the above R/ is a field, so Piz max imal (9) - R commutative ing. Prove Home (A,?) is

left exact. $0 \longrightarrow L \xrightarrow{c} M \xrightarrow{F} N$. Apply $Hon_{2}(A, ?)$: $0 \longrightarrow H_{onp}(A, L) \xrightarrow{e_{*}} H_{onp}(A, M) \xrightarrow{f_{*}} H_{onp}(A, N)$ $\Psi: A \longrightarrow L \qquad e_{*}(\Psi) A \longrightarrow M$ $e_{*}(y) \land A \xrightarrow{\varphi} L \xrightarrow{e} M$ C*= e o ? To show that this record segunce is exact we reed: (i) Ker (exe) = 30%, i.e. exe injective. (ii) $ke((f_{*}) = im(e_{*})$ (i) Suppose $\phi \in ker(e_{*})$, $\phi : A \longrightarrow L$, with $O = e_{x}(\phi) = e_{\phi}\phi : A \longrightarrow M.$ Take a e_{A} , hous: $0 = e \circ \phi(a) = e(\phi(a))$, since eis injective $\phi(\alpha) = \phi$, so $\phi = \partial$. (ii) im $(e_{*}) \subseteq ker(f_{*})$. h: A -> M, hEim(ex), so there is

g: A -> 2 with eog = h. We know in (e) = Kur (f), so applying f $f_{+}(h) = f_{0}h = f_{0}e_{0}g = f_{0}(e_{0}g) = 0$ eim(e)Ker(fre) Sim(exe). $g \in ker(f*); g : A \longrightarrow M and fog = 0.$ Since Kur(f) Sim(e), for all act we have g(a) E'inn(e), so there is a bel with <math>g(a) = e(b). Me want to define :. $e_{\mathbf{x}}(h) = e_{\mathbf{x}}$ $e \circ h = g \longrightarrow e (h(a)) = g(a) = e(b)$ $h: A \longrightarrow L$

Define h: A -> L. This is well a +> b defined because e injective means that if there are b, b' with e(b) = g(a) = e(b')Ann .b=b. mt cer Claim: h is a molghism. Suppose a EA, thun g(a) = c (b) for some b EL. Now pick ref fhen: g(r.a) = r.g(a) = r.e(b) = e(r.b) $\implies h(r.a) = r.b = r.h(a).$ Summer $a_{1}, a_{2} \in A$ with $q(a_{1}) = e(b_{1})$, $q(a_{2}) = e(b_{2})$ $q(a_1+a_2) = q(a_1) + q(a_2) = c(b_1) + e(b_2) = c(b_1+b_2)$ Now indeed: $e \circ h(a) = e(b) = g(a)$ so (q e in (·ex)

Prove Homp (?, A) is heft exact. Homp (M, A) < Homp (N, A) < 9 Homp (P, A) < 0 $\operatorname{im}(q^{*}) = \operatorname{ker}(q^{*})$ $\operatorname{ker}(q^{*}) = \operatorname{ker}(q^{*})$ ker(fx) ⊆ im(g*): V: N -> A such that Vof=0. Note: $kc(q) \leq kcr(q) \leq N$, becomme if ne kerleg) then h E im (f) = Ker (g), so there is m E M with f(m) = n, so $\psi(n) = \psi(f(m)) = 0$. Jo P:N -> A factors through the Keenel: $\overline{\Psi} : N / \longrightarrow \Delta$ (universal ker(g) $\overline{\chi} : N / \longrightarrow \Delta$ (property of kernels). becompe q: N ---> P and is subjective (F. I. T.) Then: of: P --- A can be defined

ar: $\phi(q) := \Psi(n + \operatorname{Kes}(q))$ where p = n. This given of is a morphism for free. $\frac{Claim:}{(1)} (\varphi) = \Psi.$ $g^{*}(\phi)(u) = \phi \circ g(u) = \phi (u + ker(g)) =$ $= \phi(p) = \overline{\psi}(n + ker(g)) = \psi(n).$ (5) - For the future. (6) - IF finite field with 2" elements. (a) Why every element of IF is a not of xI-X. O is a not if x - x. lake a E IF1404, then a E IFX the going of milt, shich har order pr-1. Hence: (Δ) $al^{-1} = 1$ so $al^{-1} = a$ so a is not.

(5) If c p-1 then all the roots of x-1 live in IF. Juppose a is a voot of X-1, to a =1. Nons c p-1, so there is a with rd=p-1. $1 = 1^{d} = (a^{r})^{d} = a^{rd} = a^{rd} = a^{rd} = a^{r-1}$. So the cats of x1 are also roots of x1-x. So 5 part (1) the cook of x'-1 live in IF. (a) IF have j' clements, and every one of them distinct is a not of x1-x: Bat x1-x har at most prods. Jo the roots of x1-x are exactly the elements in IF: (c) Those that x"+1 is reducible over any finite field. x + 1 = x - (-1), so it we see that -1 Runk :

is always a square, we are done. It x't i is reducible over IFp. p. prime, it is also reducible over IFp. for all using. (. because IFp & IFp. is its prime subfield). If j=2 then $x^{i_1} + i = (x+i)^{i_1}$, reducible wer iF_2 . Thinking techniques : we are told to use 3-1. The way of going from p to p-1 is looking at the muits of IFp2. Consider the field extension IF2. De have IF2 has 7-1 elements. Notice 8/9-1, and IF2 is cyclic. Jo there is a mit rue IFpi with 121=8. In patrimlat since $x^{2}-1=(x-i)(x^{4}+i)$, we have n a root of X⁴+1. So n is algebraic over

.

 $|F_{0} \leq |F_{0}^{2}|$, so $|F_{0}(n) \leq |F_{0}^{2}|$. Thus $[|F_{0}(n):|F_{0}] \leq |F_{0}(n)|$ [[Fiz (n): |Fp] = 2. The minimal isvedneible polynomial Hungerfold V.1.6. f. At this extension har degree 2 or levr. (f. not zero). Since MX a not of x+1, we must have g/x+1, so x+1 is divisible by an irreducible pulpromial with coefficients in IFp. So x'+1 75 reducible.