Japery $2014:$
(5) - M iavertisle uni matrix with sal entries and $\operatorname{det}(M)>0$. We want $M=R K$ where R is a rotation (save guT in $\delta O(u)$) and K veer triangular, who positive untruer in the diagonal.
M is invertille, so its ulumu vectors form a basis By orthogonalization, we cm find a change of basis mintuix (which will b_{2} R), and then what remains will be K uthot remains to chick os that the diagonal of k has pritive entries.
Sap $M=\left[v_{1} \cdots v_{n}\right]$, when $v_{1} \in \mathbb{R}^{n}$ from a has. B7 Grams- Schmidt ae car find an ofthournal basis: $x_{1}=\frac{v_{i}}{\sqrt{\left\langle v_{1}, v_{i}\right\rangle}}$, then

$$
x_{i}=\frac{v_{i}}{\sqrt{\left\langle v_{i}, v_{i}\right\rangle}}-\sum_{j\langle i} \frac{\left\langle x_{j}, v_{i}\right\rangle}{\left\langle x_{j}, x_{j}\right\rangle} \cdot x_{j}
$$

Thin the mathix $R=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$ isiacthongend (heank Gram-Sohuidt sogs x). forthourtand

$$
\begin{aligned}
& \text { We want : } \\
& {\left[\begin{array}{llll}
v_{1} & \cdots & v_{n}
\end{array}\right]_{@}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{ccc}
m_{11} & \cdots & m_{1 n} \\
\vdots & & \ddots \\
m_{n 1} & \cdots & m_{m n}
\end{array}\right]}
\end{aligned}
$$

$\lambda_{\text {ow }} \quad v_{1}=x_{1} \cdot \sqrt{\left\langle v_{1}, v_{1}\right\rangle}, s_{0} m_{n_{1}}=\sqrt{\left\langle v_{1}, v_{1}\right\rangle}$

$$
m_{j} r=0 \text { fr } j \neq 1 .
$$

Nale: $\frac{\left\langle x_{i}, v_{j}\right\rangle}{\left\langle x_{i}, x_{i}\right\rangle} \cdot \dot{x}_{i}=\left\langle x_{i}, v_{j}\right\rangle x_{i}$
becoure x i has mesm iby contanction.
Using this in the difficition of x_{i} we find:
(2) $v_{i}=x_{i} \cdot \sqrt{\left\langle\sqrt{i}, v_{i}\right\rangle}+\sum_{j\langle i}\left\langle\dot{x}_{j}, v_{i}\right\rangle \cdot \dot{x}_{j}$
this is the muditinication (1) ! ! !

$m_{i j}=0$ for $i>j$
(bowa dicgomal): defines K.

Indeel the diagone of k hav all pasidiue untries.
(7)- $f(x)=x^{4}-4 x^{2}+2 \in \mathbb{Q}[x]$.

Prove E colois fonp is $x /(4)$, find a guenter and
detecrine action an roots.
Reas: $\pm \sqrt{2 \pm \sqrt{2}}$. Sa7 $\alpha:=\sqrt{2+\sqrt{2}}$. Now: $\alpha^{2} \in \mathbb{E}$ so $\sqrt{2} \in \mathbb{E}$:
Then:

$$
2+\sqrt{2}
$$

$$
\begin{aligned}
-\sqrt{2+\sqrt{2}}=-\alpha ; \frac{\alpha^{2}-2}{\alpha} & =\sqrt{2-\sqrt{2}} \\
; & \frac{\alpha^{2}-2}{-\alpha}
\end{aligned}=-\sqrt{2-\sqrt{2}} .
$$

So $\mathbb{E}=\mathbb{Q}(\alpha)$

G printer the roots, so it suffice to see where an. dement of. G cads α.
id: $\alpha \longmapsto \alpha$
$\sigma: \alpha \longmapsto-\alpha$
$\tau: \alpha \longmapsto \frac{\alpha^{2}-2}{\alpha}$
$\gamma: \alpha \longmapsto \frac{\alpha^{2}-2}{-\alpha}$
Why do τ ir γ exist ?

$$
\begin{aligned}
& \mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{E}=\boldsymbol{Q}(\alpha) \\
& \ddot{Q}(\sqrt{2})
\end{aligned}
$$

In $\operatorname{Gal}(\mathbb{F} / \theta)$ we do have:

$$
\|_{f}: 2+\sqrt{2} \longmapsto \alpha^{2}=2+\sqrt{2}
$$

$\delta: 2+\sqrt{2} \longrightarrow-\alpha^{2}$. All there $\delta y^{\text {g is }}$ do exist.
In $\operatorname{Gal}(\mathbb{Q}(\alpha), \mathbb{Q}(\sqrt{2}))$ we do have:
id $\left.\right|_{\mathbb{F}}$ extunds b_{7} suding $\frac{\alpha^{2}-2}{\alpha} \longmapsto \frac{\alpha^{2}-2}{\alpha}:$
id: $\sqrt{2}+2 \longmapsto \sqrt{2}+2 \quad \frac{\alpha^{2}-2}{\alpha} \longmapsto \frac{\alpha^{2}-2}{-\alpha}$ $\alpha \longmapsto \alpha$
$\sigma: \sqrt{2}+2 \longmapsto \sqrt{2}+2$

$$
\alpha \longleftrightarrow-\alpha
$$

δ extade by suiding $\frac{\alpha^{2}-2}{\alpha} \longmapsto \frac{\alpha^{2}-2}{\alpha}$

$$
\tau: \sqrt{2}+2 \longmapsto-\sqrt{2}-2 \quad \frac{\alpha^{2}-2}{\alpha} \longmapsto \frac{\alpha^{2}-2}{-\alpha}
$$

$$
\begin{aligned}
& \frac{\alpha^{2}-2}{\alpha}=\tau\left(\frac{\alpha^{2}-2}{\alpha}\right)=\frac{\tau\left(\alpha^{2}-2\right)}{\tau(\alpha)}=\frac{\tau\left(\alpha^{2}\right)-2}{\tau(\alpha)}= \\
&=\frac{-\alpha^{2}-2}{\tau(\alpha)} \Rightarrow \tau(\alpha)=\frac{\alpha\left(-\alpha^{2}-2\right)}{\alpha^{2}-2}= \\
&=\frac{\alpha \cdot(-\sqrt{2}-2-2)}{\sqrt{2}+2-2}= \\
&=\alpha \cdot \frac{-\sqrt{2}-4}{\sqrt{2}}
\end{aligned}
$$

$$
\frac{\alpha^{2}-2}{-\alpha}
$$

$\frac{\alpha^{2}-2}{\alpha}$ amiliblai it

$$
\begin{aligned}
& x^{4}-4 x^{2}+2=f(x)=\left(x^{2}-\sqrt{2}-2\right)\left(x^{2}+\sqrt{2}-2\right) \\
&=(x+\sqrt{2+\sqrt{2}})(x-\sqrt{2+\sqrt{2}})(x-\sqrt{2-\sqrt{2}}) \\
&(x+\sqrt{2-\sqrt{2}})
\end{aligned}
$$

(8) - pq prive momers
(a) Defive surj map:

$$
\phi: Q\left(\Gamma_{p}\right) \otimes_{Q} Q\left(\delta_{q}\right) \rightarrow Q\left(\Gamma_{p}, \gamma_{q}\right)
$$

that $\pi \mathbb{Q}$, liver ant ring homoverphism.

$$
\phi: \mathbb{Q}\left(\Gamma_{p}\right) \times \mathbb{Q}\left(\Gamma_{q}\right) \longrightarrow \mathbb{Q}\left(\delta_{p}, \Gamma_{q}\right)
$$

$$
\left(a+b \Gamma_{p}, c+d \delta_{q}\right) \longmapsto a c+b c \Gamma_{p}+a d \Gamma_{q}+d \int_{n} p
$$

This is \mathbb{Q}-salmined (\mathbb{Q} - slivear and fr all $r \in \mathbb{Q}$

$$
\phi(\alpha \cdot r, \beta)=r \cdot \phi(\alpha, \beta)=\Phi(\alpha, \sigma \cdot \beta))
$$

This fiver $\phi: \mathbb{Q}\left(\Gamma_{q} \otimes_{Q} Q\left(\Gamma_{q}\right) \rightarrow \mathbb{Q}\left(\Gamma_{i} \Gamma_{q}\right)\right.$
a smjeccive jour homomodhisme with $\phi(\alpha \otimes \beta)=\alpha \beta$
$\mathbb{Q}\left(\Gamma_{1}\right)_{Q} Q\left(\Gamma_{q}\right)$ has iduntit, addition ar a Q-v.s. and. coup-uent-wise mentiphication:

$$
\begin{aligned}
\alpha \otimes p \cdot \gamma: & =(\alpha \gamma) \otimes(p \delta) \\
C \otimes 1 \cdot 1 \otimes S: & =r \otimes S=r S \otimes 1=S C_{\otimes 1}= \\
& =S \otimes r=S \otimes 1 \cdot r .
\end{aligned}
$$

for all $\operatorname{r,s} \in Q$. So muntiplication is well dulinad.

This gives $\mathbb{Q}\left(\Gamma_{\Gamma}\right)_{\otimes_{Q}} \mathbb{Q}\left(\Gamma_{q}\right)$ a rim sfoculture.
For $\$$ to be a cing homomophism we ned:
(i) $\phi(1 \Theta)=1$.
\leftarrow tim \oint. Giug. $^{\text {goup. }}$
(ii) $\phi\left(\alpha_{\beta}+Y O \delta\right)=p(\alpha \otimes \beta)+\rho\left(Y_{\theta \delta} \delta\right)$
(iii) $\phi\left(\left(\alpha_{\otimes \beta}\right):\left(Y_{\theta} \delta\right)\right)=\phi\left(\alpha_{\theta}\right) \cdot \phi\left(r_{\theta} \delta\right) \cdot \longleftarrow t_{\text {me }}$.
(s) If i' q distinet, shas ϕ s so

If piq dirinat primes, tham $\mathbb{Q}\left(\Gamma_{p}, r_{f}\right)$ har dimmsion 4.

Also $\mathbb{Q}\left(\delta_{p}\right)_{Q} \mathbb{Q}\left(I_{q}\right)$ har dinemsion 4:
Y $\Theta 1, \Gamma_{p} \otimes 1, \Gamma_{q}, \Gamma_{p} \otimes \Gamma_{f} \mid$ is a basis:
Sime ϕ is sarj, it is inj, and ϕ is is
(c) If $p=q$, find a Q - hais of $\operatorname{ker}(\phi)$.

Lack at untix repromatition of ϕ
$e_{1} \quad|\theta| \longmapsto 1$
er Γ_{ρ} el $\longmapsto \Gamma_{\rho}$
es $1 \otimes \Gamma_{p} \longmapsto \Gamma_{p}$
$e_{4} \cdot \Gamma_{j} \otimes \Gamma_{p} \longrightarrow \Gamma_{q^{2}}=q$; hasis on $\mathbb{Q}\left(r_{p}\right)$ is $4, \Gamma_{p}$;

$$
4 \xrightarrow{M} 2
$$

$$
\left[\begin{array}{l}
4 \\
k \\
k \\
k
\end{array}\right]\left[\begin{array}{l}
\dot{k} \\
\dot{k}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
v_{2} \\
v_{3} \\
v_{1}
\end{array}\right]
$$

This sops that Rec(ϕ) hiv diremsone 2. So oe ned of find two lineally indegradicul vecobore is $\operatorname{ker}(\$)$
$J_{\text {amer }} 2013$:
(1) $-|f|=56=2^{3} 7$. Shes f is ut simple.

B7. Show 3 we have: $u_{7}=1 \times 8$
If $u_{7}=1$, ar are dine.
If $u_{7}=8$, we w he at $u_{2}=1 \times .7$
We have $8.6=4.8$ elmunts of order . 7 . We then tore 8 daunts left., since. the Splay 2 -sesjomp must have order 8; we inst have $u_{2}=1$. We are done:
(2) $|G|=200=2^{3} 5^{2}$. We want $\phi: G \rightarrow S_{8}$ with oprper, yon-diuvial. Kernel.
We have a S-fow 5 -cus son. H with 25 dements, $s ?$? $S_{7} l_{\infty} 1$ Take $A:=\lg _{\mathrm{g}}, \mathrm{H}, \cdots, \mathrm{g} \mathrm{B}_{\mathrm{H}}$. the left crets, we have $8=\frac{200}{25}=[G: H]$ of them. Hate $g i=e \in G$ We har a left tanslation indreing $G B A$. This

Natice that an $h \in H$ is in $\operatorname{kar}(p)$:
 $g_{1} H=H$ if $g \in H$.
Supsse $j \in G H H$, we wout to see that gH $\neq H$. Since Seing in the costets is on eqpindimee dar, this Luds
(3). Exampler f:
(i) Eircustin $p=5$ over $\mathbb{Q}: x^{2}+5 x+10$
(ii) UFD ust PID: $k[x, 7]$ is UFD $(x, 7)$ is net minuinal.
(iii) Finits extwsion of $\mathbb{F}_{p}(x)$ that is mormol, ut sepade:

An extusion E / K is uscual if it ratifies ang of the follosing:

1. Every umbeding $\sigma: E \rightarrow \bar{k}$ over k induccs an. antomorphism. of $E:(\sigma(E)=E)$.
2. E is the silitivy field of k for s.me pol) ungials in $K[x]$.
3. Ever ivraducish gd] of $K[x]$ with a nost in E must. split in E.
An extusion. E / K is separatle whevevier wer? deurut. of E is separade ores K, that is the iveduille phominial orer k of everp domut in E har we repeated roots (in \bar{k}).
Caudiante: $t^{p}-x$ is inducisile in $\mathbb{F}_{p}(x)$.

The spitimg fircld of $t^{-}-x$ is wrimal Sout nut serarale (imece t_{-x}) has ouvy one cort.
 Sha Mop N is Noctucian:

We waut to se that werg somonomale of Mors is timitly gueated.
Take $L \subseteq M_{G_{R} N}$ an R-rosmosmele. We wout to see that L is $f \cdot g$. that is L, N, the homonocphic ingege of a frew modules that is, thare is $l \in \mathbb{N}$ sithe $R \xrightarrow{p} L$.
So it is jal magh to find rime cact serumes :

$$
0 \rightarrow \operatorname{kr} \phi \rightarrow R^{R} \rightarrow L \rightarrow 0
$$

Idea: use funutor ? $\theta_{R} N$.

Nate: M is fog So we have $\Psi: R^{m} \longrightarrow M$ a madil hemomorachisen, cmjuluion, me \mathbb{N}. Naw:

$$
0 \rightarrow \operatorname{Ker} \psi \longrightarrow R^{M} \longrightarrow M \longrightarrow 0 \text { is cract. }
$$

Aply ? or N, we athin :

So $N^{m} B$ Noctherian:
Homowarahic ingerer of Nocthiam modules are Nochlyian.
So $M \operatorname{opp}_{2} N \cong I_{m}(\psi)$ is Nathrion: Hhey chact TIT. 1.6

$$
=\psi\left(N^{m}\right)
$$

Wermation: ascunting disim condious.
(5) - TBD
(C) -
(ㄱ) -
(8) - R iny with $1 \neq 0, M$ a $f y$. R-ned:
(a) $\int_{\text {mppe }} M_{s}$ prjeation, are weont dements $m_{1}, \ldots, m x \in M$ and $f_{i}: \underset{\sim}{\mu} R, 1$ sisk such that:

$$
m=\sum_{i=i}^{x} f_{i}(m) m_{i} .
$$

M is f_{k} so $_{k} R^{k} \xrightarrow{\phi} M$ a mojertione hamouralision exists. $m=\sum_{i=1}^{\infty} r_{i} m_{i} b M M f_{j}, m_{i}$ jumators our R.

B. prijativity of M there

$$
F=R^{k^{k^{\prime}} \phi} \downarrow \longrightarrow
$$

is $h: M \rightarrow F$ with $\phi h=I_{M}$

Jefine $f_{i}(m): \phi(r) \quad f_{1} f_{i}: M \longrightarrow R$.
Write:

$$
\begin{aligned}
m & =\ln (m)=\phi h(m)=p h\left(\sum_{i=1}^{k} c_{i} m_{i}\right)= \\
& =p\left(\sum_{i=i}^{k} r_{i} h\left(m_{i}\right)\right)=\sum_{i=1}^{k} p^{k}\left(c_{i} h\left(m_{i}\right)\right)= \\
& =\sum_{i=1}^{k} r_{i} \phi\left(h\left(m_{i}\right)\right)=\sum_{i=1}^{k} f_{i}(m) m_{i}
\end{aligned}
$$

(b) Prure thet the converse is frue:

We wout M to be procetion Knading d'uat there ove $m_{1}, \ldots, m k \in M$ and $f \because M \longrightarrow R, 1 \leq i \leq k$ with

$$
m_{i}=\sum_{i=1}^{k} f_{i}(m) m_{i}
$$

