Jamar 2013:
(5) - $R$ comm ring sith $1 \neq 0, N$ left $R$-not. $P_{\text {prime ideal, }} R_{p,}, N_{p}$ localizations Shad:

$$
N=501 \Leftrightarrow N_{p}=501 \text { for all } p \Leftrightarrow N_{M}=304 \text { fr all }
$$ maxima $M$.

(i) $\Rightarrow$ (ii): If $N=\{04$ then am $\eta$ dose deventer in $N_{p}$ ave $(0, r),(0, s)$ for some $r, s \in R!P$. Since: $r \cdot 0=0=5 \cdot 0$ then $(0, r)=0=(0,5)$. so. $N_{p}=50$ 个.
(ii) $\Rightarrow$ (iii): Eves 7 animal ideal over a ring with with is prime.
(iii) $\Rightarrow$ (i) : Trick: prof 57 contapasitive: Assume $N \neq$ bol, them we will shaw that $N_{M} \neq$ sol fo a $M$ maximal. Take $x \in N$ int sion, $A(x)$ the
amililats of $x$ :

$$
4 r \in R \mid r \cdot x=0\}=: A(x) \text {. }
$$

We have $A(x) \subseteq R$, and $A(x) \neq \phi$. since $0 \in A(x)$, and $A(x) \neq R$ sine i\& $A(x)$ because $1 \cdot x=x \neq 0$. Ether use or prove that $A(x)$ is ideal: Thur then is a maximal deal i containing $A(x)$ We damn that $N_{\mu} \neq(50)$, $\operatorname{became}(x, 1) \neq(0,1)$. Supper $(x, 1)=(0,1)$, then there $s$ $r \in R 1 M \operatorname{sen}$ tut $r(1 \cdot x-1 \cdot 0)=0$, but them $0=r \cdot x$, so $r \in f(x) \subset M$. Contradiction. Tier $N_{M} \neq 509$
(6) $\quad V=\mathbb{Q}(\sqrt{2}+\sqrt{3}), k=\mathbb{Q}(\sqrt{2})$
(a) $V / Q$ is Galors extmosion deternine $G a(N / Q)$.

Toe V/ Q to be Golois it veedr to be wrund and separalle

Tale $\alpha=\sqrt{2}+\sqrt{3}$, proced to comente $\alpha^{2}, \alpha^{3}, \alpha^{4}$, and find rebatione betwens them.

$$
\begin{array}{ccc}
\sqrt{2}+\sqrt{3}, & -(\sqrt{2}+\sqrt{3}), & \sqrt{2}-\sqrt{3},-\sqrt{2}+\sqrt{3} \\
\alpha_{1}, & \alpha_{2}, & \alpha_{3}, \\
\alpha_{4}
\end{array}
$$

Claim: The polpmomial:

$$
\begin{aligned}
f(x) & =(x-2)(x-22)(x-\alpha 3)(x-\alpha 4)= \\
& =\left(x^{2}-5-2 \sqrt{6}\right)\left(x^{2}-5+2 \sqrt{6}\right)=x^{4}-10 x^{2}+1
\end{aligned}
$$

This winally worles for $\Gamma_{p}+\Gamma_{q}, p, q$. coprime, and. $\sqrt{p+\sqrt{q}}\left(f_{\text {or }} \pm \sqrt{p \pm \sqrt{q}}\right)$.
is the wimimal Nopmomial of $\sqrt{2}+\sqrt{3}$.
To this we will show that $f 3$ ivedmerb over $\mathbb{Q}$.
Since $f$ is primitive, it is got ming to ins that $f x$ inveducille over $\mathcal{K}$ :
Heyeropod II .6:13
Sine the note of $f$ are ut in $x$, if: it were to fate ours $x$ it would have to be in gundadic terms:

$$
\begin{aligned}
& f(x)=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right), a, b, c, d \in \pi \\
& (a+c) x^{3}=0 \\
& \left.(b+d+a c) x^{2}=-10 x^{2} \quad \begin{array}{l}
c=-a \\
(a d+c c) x=0 \\
b d=1
\end{array}\right\} \begin{array}{l}
b, d= \pm 1 \\
s_{0}:-a^{2}=-12 \\
\text { or: }-a^{2}=-8
\end{array}
\end{aligned}
$$

This hav no sulutions in $x$ :
So fimbed is imeduide over a:
Claim: $V$ is the rititiy fied of $f$.

$$
\begin{aligned}
& \sqrt{2}+\sqrt{3},-(\sqrt{2}+\sqrt{3}), \sqrt{2}-\sqrt{3},-\sqrt{2}+\sqrt{3} \\
& \alpha_{1} \\
& \alpha_{2} \\
& \alpha_{2}=-\alpha_{1} \in \mathbb{Q}\left(\alpha_{1}\right)=\mathbb{Q}(\alpha) \\
& \alpha_{3}=\frac{-1}{\alpha_{1}} \in \mathbb{Q}\left(\alpha_{1}\right) \\
& \alpha_{4}=-\alpha_{3} \in \mathbb{Q}\left(\alpha_{2}\right) \quad \sqrt{1+\sqrt{q_{1}}} \text {. }
\end{aligned}
$$

So all the note of $f$ an in $N$.
nocual So $v$ is the rilitiy fold of fimeducier
 I. 3.11 : To compute $G a(V / Q)$ un ungie:

Hamerford V. L. il

$$
\begin{aligned}
& a=\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}=-10 . \\
& b=\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}=-2 . \\
& c=\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}=2:
\end{aligned}
$$

Then $\mathbb{Q}=\mathbb{Q}(a, b, c), s_{0}:$

$$
\operatorname{Ga}(V / \mathbb{Q}) \cong x /(2) \oplus x /(2)
$$

Comment. The isomorphism excursion Theorem: 1.8 Papuikolas also works.
( ( ) $T: V \rightarrow V$. Check: $T$ linear.

$$
\alpha \mapsto(1+\sqrt{2}) \alpha
$$

Chore a basis of $V$, represent $T$ in unatix form. find char (T).

Notice: if $(1+\sqrt{2}) \alpha \in V$ then using $\alpha^{-1} \in V$ we have $\Gamma_{2}=\frac{(1+\sqrt{2}) \alpha}{\alpha}-i \in V$

We wed to justify $F_{2} \in V$, motor $\sqrt{3} \in V$.

$$
(\sqrt{2}+\sqrt{3})+(\sqrt{2}-\sqrt{3})=2 \cdot \sqrt{2} \text { in } \sqrt{\text { si }} \sqrt{2} \in V \text {. }
$$

Simibil) $\sqrt{3} \in V$. $N_{\text {sic }}: Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})$ 2 dar
Nos:
$41, \sqrt{2}, \sqrt{3}, \sqrt{6}\left(\right.$ must $b_{e}$ a basis of 1, because $\subseteq h(x)$
$x^{2}-3$ imedmistl over $Q(\sqrt{2})$
so $V=\operatorname{OC}(\sqrt{2})(\sqrt{3})$.
so $V=O(\sqrt{2})(\sqrt{3})$.
Up til was, we have pean that $T$ is ardell defined
$\hat{N}_{\text {ow }} T(\alpha)=r \cdot \alpha$ for some $r \in V$, s. $T$ will be liveac because it is a multinfiation so a solace.

Altcrativel, hand laced that:

$$
\begin{aligned}
& T(\alpha+\beta)=T(\alpha)+T(\beta) \\
& T(s \cdot \alpha)=s \cdot T(\alpha) \quad, \alpha, \beta \in V, s \in \mathbb{Q} .
\end{aligned}
$$

To write $T$ w sing the dos is:

$$
\begin{aligned}
& T(1)=1+\sqrt{2} \\
& T(\sqrt{\sqrt{2}})=2+\sqrt{2} \\
& T(\sqrt{3})=\sqrt{3}+\sqrt{6} \\
& T(\sqrt{6})=2 \sqrt{3}+\sqrt{6}
\end{aligned} \quad \text { so } \quad T=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Hene:

$$
\operatorname{dec}(T)=\operatorname{det}(\mathbb{1}-\lambda T)=\cdots=\left((1-\lambda)^{2}-2\right)^{2}
$$

(c) id: $k \rightarrow k, k=\mathbb{Q}(\sqrt{2})$, fint a $k$ haris for $K \otimes_{Q} V$ unvisting of igumectors of:

$$
i d \otimes T: k \otimes_{\mathbb{Q}} V \longrightarrow k \otimes_{\mathbb{Q}} V
$$

quesent the cigenvedors an limer ind diontion st pure
U'sul apprach: turscing bais for $k, V$ will jive
a bais for $k \otimes_{a} V$.
$A$-hais for $V$ is $1!\sqrt{3}$, a $k$-husfor $k$ © $\left(\sqrt{2}, \sqrt{3}_{3}\right)$
is 44 . $\int 0$ Y $\left.101,10 \sqrt{3}\right\}$ Ba. $k$-wis for $K \otimes_{a} V$. Now let's tee ho ido $T$ action it (just to find eijunectors):

$$
\begin{aligned}
\operatorname{id\theta } T(\mid \otimes 1)=i d(1) \otimes T(1) & =1 \otimes(1+\sqrt{2})= \\
& =(1+\sqrt{2}) \cdot(1 \otimes 1) . \\
i d \otimes T(1 \otimes \sqrt{3})=i \otimes(\sqrt{3}+\sqrt{6}) & =(1+\sqrt{2}) \cdot(1 \otimes \sqrt{3}) .
\end{aligned}
$$

Rama: $1 \otimes \sqrt{2}=\sqrt{2} \cdot(1 \oplus 1)=\sqrt{2} \propto 1$.

$$
\begin{array}{ll}
\uparrow & \uparrow \\
V \text { is } k \text {-wis } & k \text { is } k-v . s
\end{array}
$$

using action wing action

$$
\text { of } k_{\text {on }} v \text { of } k_{\text {or }} k
$$

${ }^{10} \sqrt{2} \in K Q_{Q} \cup$ What we are NoT doing is: $\sqrt{2} \cdot 1$.
trials in $k$.

$$
16 \sqrt{2}=1 \otimes \sqrt{2} 1=1 \cdot \sqrt{2} \otimes 1=
$$ rewrite $1 \otimes \sqrt{2}$ in $41 \sigma\} 1 \otimes \sqrt{3}\}$.

$$
=\sqrt{2} \otimes 1 .
$$

It talus nut that hien) $1 \otimes \sqrt{3}\}$ is dreed cm eijubhis for ide $T$ (this is unt time in weren), we would wed to do a daegs of basis in (yuerel).
Hace:

$$
i d \theta T=\left[\begin{array}{cc}
1+\sqrt{2} & 0 \\
0 & 1+\sqrt{2}
\end{array}\right]
$$



$$
\begin{aligned}
& k \subseteq \mathbb{C} \\
& L \subseteq \mathbb{C}
\end{aligned}
$$

(a) Fint rijection goup ham:

$$
\phi: \operatorname{Gal}(l / Q) \longrightarrow \operatorname{Gad}_{\sigma} \longrightarrow\left(\mathcal{H}_{/ K}, \sigma_{1 k}\right):
$$

To duad:

סik lies iuside $k$ beame of havg weato.
(b) For $(\sigma, \tau) \in \operatorname{Gr}(H / a) \times \operatorname{Gal}(k / a)$, find a
necence? and Inefficient condition for $(\delta, \tau)$ to be in. $\operatorname{im}(\phi)$.

Isomoflisin extrusion theorem.
Gwen: fond g comet share rods.
(8)- (b) Prow that if there are docents $m_{1}, \cdots, w_{k} \in M$
and $R$-mad hams $f i: M \longrightarrow R, 1 \leq i \leq k$ with $m=\sum_{i=1}^{k} f(m) m_{i}$ for all $m \in M$, Aw $M$ s qujative.

Let: $\quad 0 \longrightarrow A \xrightarrow{C} \mathbb{K}_{-N^{\prime} \phi}^{g} M \longrightarrow 0$
Co an erect resume ce: It 3 com ph to shaw it
aplite, to see $M_{3}$ prjectines:
Sincere of surjection, for mi $\in M$ ar have $b_{i} \in B$

Nate: $\phi$ with $j\left(b_{i}\right)=m_{i}$. Define: $\phi: M \rightarrow B$. max depend an the Supple $m=m^{\prime}$, the $f_{k}(m)=f_{i}\left(m^{\prime}\right)$. $m \mapsto \sum_{i=1}^{k} f_{i}(m) \zeta_{i}$ bise of Tut Tm $\phi_{1}(m)=\sum_{i=1}^{k} f_{i}(m) s_{i}=\sum_{i=1}^{k} f_{i}\left(m^{\prime}\right) S_{i}=\phi\left(m^{\prime}\right)$. we do of care. Now os is an $R$-nod homowsphism (do it in the examen), and $g_{0} \phi_{k}=$ id. $M$ sines :

$$
\begin{aligned}
& (g \circ \phi)(m)=g\left(\sum_{i=1}^{k} f^{\prime}(m) S_{i}\right)=\sum_{i=1}^{k} \frac{f_{j}(m)}{n} g\left(b_{i}\right)= \\
& \quad=\sum_{i=1}^{k} f_{i}(m) m_{i}=m .
\end{aligned}
$$

August Roll:
(1)- $M=\left[\begin{array}{ccc}0 & 0 & -y \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right], y$ indeterminate.
(a) flow char $(\mu)=f_{n}(x)$ is inedible in $Q(p)[x]$.

$$
\operatorname{dat}(M)=\operatorname{det}(11-x \cdot M)=\cdots=-x^{3}-y
$$

Alimit 1: roots ...
Atiunpt 2: Eifuntrin's critrious
Tuw: Let D be UFD with fiod of faction F: Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in D[x]$ with $f$ un-coustant. Them if 9 is am ivechuider dement of D sueh otuat plan, plai for $i \leq n-1$, and $p^{2} x\left(a_{0}\right.$, them $f$ is ivercmisle over $F[x]$.
Nak: $D=x[y], F$ is $\mathbb{Q}(y)$, and $p=y$ is imedruide in $D$
Now: y. $x^{3}$,,$|0, y|-7$, and $y^{2} k-y \cdot$. So b
Eisustrin's we hewn $-x^{3}-7$ is ivelimille.
(S) Jhas $M$ is diag gandizalle over $\overline{\mathbb{Q}(\boldsymbol{)})}$.

M in rome basis har to look diagonal.

Recall: $N=\left[\begin{array}{ccc}d_{i} & & 0 \\ & \ddots & \\ 0 & & d_{n}\end{array}\right]$ a diagoal matrix hastrastic $\begin{aligned} & \text { dlpwimial }\end{aligned}$
$\operatorname{det}(11-\lambda \cdot N)$ ishere all untice were rots.
The minimer portpomied will also memililate $N$, ant the nots sill be roth f char $(N)$.
 oue Endownflisen", Joctan blachs: Exinix is,


Agcore ${ }^{7}$ Lay, either abon or beloo thio ydels haur diamnal mhtion,

- elsushere.

The kecreds of the matrices deport on the size of the slaks. $\left[\begin{array}{ll}\lambda & 0 \\ 1 & \lambda\end{array}\right]$ kincol:
B) Caples-Haniltan Thorems the minimal plpminiel Hayeford III 5 2(ii)

$$
q_{M}(x) .
$$

divides the doarterstice odpminial, since $\overline{\mathbb{Q}())}$ is aldsacicall) dsed, Lith $q_{M}(x)$ and $f_{M}(x)$ spit aver $\overline{Q(f)}$. If rempius to ree that $f_{\mu}(x)$ low $_{\text {un }}$ unlinge roats. A not of a rilywomial is mutinge if it is a not and it is als a orot of the frumal decination of the potpumial Haugufped I. $6.10(i)$.

$$
\underbrace{f_{M}(x)=-x^{3}-7}_{\begin{array}{c}
\text { docr unt have } \\
0 \text { art a rost }
\end{array}} ; \underbrace{f_{M}^{\prime}(x)=-3 x^{2}}_{\text {oulp hav } 0 \text { or ast }}
$$

So. $f_{M}(x), f_{M}^{\prime}$ have dI ratv differunt, bo $f_{M}(x)$ hav wo multifle oats.
(c) Slow that $M$ is mt diagualizalle oves $\overline{F_{3}(7)}$ From (s), watia $f_{M}^{\prime}(x)=0$. Them $f_{M}(x)$ har mallinge nots (it sitits over $\overline{\mathbb{F}_{3}(7)}$, so it har nats, and the w will also be atts of $f_{M}^{\prime}(x)$ ).
$x^{3}+7 \in \overline{\mathbb{F}_{3}(7)}$, so it hav to have a oust

$$
\text { so } \cdot \gamma^{1 / 3} \in \overline{r_{3}(\supset)} .
$$

So $M$ is mut diganatiadle.

