Ay y (as) 2014:-
(1) I fuit isup ation \bar{z} fink.
$z_{0} \leq \bar{x}$ fred purs. Swo that $\bar{z}\left(z_{0}\right)$ mad ?

 He alion $H C \bar{\Sigma}$ unt sia our ! Then

$$
|\bar{x}|=\left|\bar{z}_{0}\right|+\left|\vec{k}_{1}\right|+\cdots+\left|\bar{x}_{-1}\right|
$$

B_{7} the orde- Jfcizer thosm: $\left|x_{x}\right|=\left[u: H_{x}\right]>1$,
 $\operatorname{b}_{9} 9 S_{0}:|z|-\left|z_{0}\right|=\left|\overline{x_{1}}\right|+\cdots+\left|\bar{x}_{1}\right|$ is diossle $\zeta_{7} p$ so $|\bar{x}|-|180| \equiv 0$ and p
(l) Pare Suad S_{7} wo Tharcum:

An. two Sflus p-ris aros are unjugete.
 traustion.

The menes of conts: $|f / p|=[G: P]$, aride a madimed 7 give to o The $p^{x}|\epsilon / p|$, so $\left|x_{0}\right|>0$ b pact (a). This meanes thut a coret $a P \in G / P$ is fixed: $h(a P)=a P$ fo all heH. Thus: $\left.a^{-1}(h(\sim P))=a^{-1}(\sim P)\right)=P$, shich meare aha $\in P$ for all $h \in H$. So $a^{-1} H a<P$, so since $\left|a^{-1} H_{a}\right|=|H|=|P|$ we have $a^{-1} H a=$?
(7). F_{1}, F_{2} f.d G extmin fidds if K sith $F_{1} \subset \bar{k}, i=1,2$. Shas $F_{1} F_{2}$ is Galois mer k.

Hayceffor I III Finite dimensional extusime are firind $/$ gurates and adgsaic:
So $F_{1} / k, i_{2} / k$ are fig and afcraice:
As, Galois and dso fid over k, so Haychon İs.il.
and follaing remand impliss that there exist plowniads
$f_{1}(x), f_{2}(x) \in k[x]$ with inchucille fators meh tant
F_{1}, F_{2} are the soliting fideds of $f_{1}(x), f_{c}(x)$ respaciouds.
Thus $\bar{T} \cdot F_{2}$ is the splitivy fied of the leat commone
untiphe of $f_{1}(x) f_{2}(x)$. So Y_{7} thaychof I S.ll we hou that $F_{1} \cdot F_{2}$ is Gabis ouer k.
(8) - R couver ring satifition the descending chain comatition. Shau that werl pinve deal in R is maximal.

We wile with $R \geqslant I$. Trick: look at R / ρ for Prime We wort to ur that ? maximal it $\frac{p}{p}$ fidel. We keos hat? pine if $\frac{\mathrm{R}}{\mathrm{p}}$ domain.
Real: An ideal $I C \frac{F}{\mathrm{P}}$ is of the form J / p for Same ideal $J \subset R$. So this means trent $\frac{R}{p}$ also
 explicit with details here. Take an dement $x \in \frac{q}{p}$, we wont $x^{-1} \in \frac{R}{p}$. Consider: $(x) \geq\left(x^{i}\right) \geq\left(x^{3}\right) \geq \ldots\left(x^{i}\right) \geq$ is a descending It must stabilize: the ne is some \vdots with $\left(x^{i}\right)=\left(x^{j}\right)$ for all si i. In articular $\left(x^{i}\right)=\left(x^{i+1}\right)$,o there is τ^{k} / p such that $x^{i}=y x^{i+1}$, since P pine, $\frac{z}{P}$ is domain so we con cancel: $1=\gamma^{x}($ and $1=x)$) so $x^{-1}=\gamma \in \frac{p}{p}$.
$J_{\text {min }} 2015:$
(1) - (a) G grup, $A, B \leq G$ delian. Prove $A \cap B \leq\langle A \cup B\rangle$.
 So. .f we ree $A \cap B \leq Z(\langle A \cup B\rangle) \subseteq$ (A৩B), we are dove.
Lat $x \in A \cap B, y \in\langle A \cup B\rangle$, we wat: $g x=x g$. Write: $g=a_{1} b_{1} \cdots$ an b_{n} with $a_{i} \in A, b_{i} \in B$. Now:

$$
\begin{aligned}
j_{x} & =a_{1} b_{1} \cdots a_{n} b_{n} x=a_{1} b_{1} \cdots a_{n} x b_{n}=\cdots= \\
& =a_{1} x b_{1} \ldots a_{n} b_{n}=x a_{1} b_{1} \ldots a_{n} b_{n}=x \cdot
\end{aligned}
$$

becouse $x \in A, B$ with dadian. Then $A \cap B \leq z(\langle A \cup B\rangle)$, So $A \cap B \subseteq\langle A \cup B\rangle$.
(b) G ficict goup unt adic of prime ordec ($\mathrm{mt} \mathrm{X} / \mathrm{p}$) for \mathfrak{q} qime) with every prope sol gunp addiam. Pave G contriuss a nemtrivial, pmps, uncrual esb goinp.

 mativial efogen tat is maximal with eppet to memsion A. Lak at $N_{G}(H)$, suac $H_{\text {is }}$ maximel ad $H<N_{f}(H)$ ere hou $N_{G}(H)=H, r N_{G}(H)=G$. If $N_{G}(H)=G$ them
 In. patimeter $\left[t: N_{\epsilon}(H)\right]=[G: H]=\frac{1 G}{1 H 1}$ are her ajegats of H. The \bar{H} a miject of H, it most do be maximal ($\bar{H}<M$, the $\bar{H}=j j^{H} ; H=j j^{-1} j=$
 If In $\cap \bar{H} \neq\langle c c$ them $\langle H \cup \bar{H}\rangle=\epsilon \rightarrow$ maximalit of
H, \bar{H}, ald ζ_{7} (a) we have $\operatorname{Ce}\langle\neq H \cap \bar{H} \Delta\langle H \cup \bar{H}\rangle=G$. What remains is $H \cap \bar{H}=$ bel. This must be the care for all conjugates of H (ollurwise we are in the previous axe). The member of wonidentit? dement in some conjugate of H1 is:

$$
\frac{I G T}{I H C} \cdot(|H|-1)=I G 1-\frac{I G 1}{I H C}
$$

Now s since $\mid \mathrm{HI} \geqslant 2$ because H untrivial, we have:

$$
\frac{|G|}{2} \leq|G|-\frac{|G|}{|H|}<|G|-i
$$

So there is sone nothivial $x \in G$ that is nt contained in $\because 7$ conjugate of H The $\langle x\rangle$ is a proper matrivial ash gap of f, so it is contrived in some maximal unativial props sos j op K that is nat ceingate to H. We con asurues (b) dosing the save argument. ar. for H) that the infuspection of k with
of is curator \bar{k} is trivial: $k \cap \bar{k}=h e \%$.
We mow ham two options: $\bar{H} \cap \bar{K}=4 c\}$ or $\bar{H} \cap \bar{k} \neq$ hel.
If $\bar{H} \cap \bar{k}=$ hel them we mot have:
$\begin{aligned} & \text { member of manidenit } ? ~ d e m e m d s \\ & \text { in some conjugate of } k\end{aligned}$ coning et of H
Final, we fad. \bar{H}, \bar{K} same unijugate if H, K that are maximal, so $\left\langle\bar{H} \cup \overline{V_{0}}\right\rangle=G$, ant different, and $\bar{H} \cap \bar{K} \neq h e l$, so $\bar{H} \cap \bar{k}$ is a mantivial paper sub gnp. Bo pat (a) ore have $\bar{H} \cap \bar{k} \unlhd(\bar{H} \cup \bar{k})=G$.
(a) - $|\epsilon|=45$, prov G delian:

$$
|G|=15=9 \cdot 5=3^{2} \cdot 5
$$

and sade asjave.s $\frac{x}{(5)}$, and $u_{k}=1$ ss it is wrual and such cuspoup is $\frac{x}{(9)}$ or $\frac{x}{(31)} \times \frac{x}{(3)}$.
An 7 mandedutit dement in H or K have copime orders, so $H \cap k=$ Le? $N_{\text {os }} \mid N K C N=45$, since $H, K \& t$ we $H K=H \times K \leq G$ so $H \times K=G$.

This $G \cong \frac{x}{(a)} \times x /(5) \times G \cong \frac{x}{(s)} \times \frac{x}{(s)} \times \frac{x}{(5)}$,
bith dolian.
(1): R inte al domin, Nocthrian. Prue Anet if werp two $a, b \neq 0$ in f ham a common divisor $x_{a}+y, x_{1}, \notin R$, them R is a P.I.D.

Sirece R is Nutherion, were ideal is fiuitd guenated theyedof TIII

So it cikus to pure tut if $I \subseteq R$ is memeal guath s, " dumets

$n=1: G_{\text {oud }}$
Suppe Lypotheris thae for $n-1$: if an idel aun be maneated b) $u-1$ dements (or foers) the it is pineipal.
n: $\int_{\text {upper }} I=\left(a_{1}, \ldots, a_{n}\right)$, m. dement $x \in I$ men be wattere (1) ${ }_{\text {chime }}=(r, a s, \ldots, a n), r$ tking $a_{1}, a z$.

is day enomes. to do ! $\quad e^{\left(a_{1}, \ldots, a_{n-1}\right)}=(d)$

$$
\text { as } x=r_{1} a_{1}+\cdots+r_{n a_{n}}=\left(r_{1} a_{1}+\cdots+C_{m, 1} a_{m-1}\right)+r_{n} a_{n} \text {. }
$$

Noce: What if $a=0 ? \quad, \quad x \in(d)+(a n)=(s)$ chain
By hyphesis, if $a \neq 0$, then a and an hare a
cemmon divisof, call it $s=u a+$ wan for some $w, s \in R$.
Campare (s) with $(a)+\left(a_{n}\right)$, we womt $(s)=(a)+\left(a_{n}\right)$.

- - - This doer unt wirle argueal ar we uned!

Romk: $\quad\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}\right)+\ldots+\left(a_{n}\right)$, but for this quving just $u=1$ is unt gool aneyh, we als. hand u=2.
(a) Here proing $(d)+($ au $)=(s)$ is god enemgh for a solution:
(4) Reducing n to $n-1$. This deer ist repuire to gane $u=2$: $n=2$: $I=(a, b)$: We koue that $a, b \neq 0$, se thy hove a common divisor $r=x a+)^{b}$: The dime is $(r)=(a, b)$ diaad, $r \in(a, b)$ so $(r) \subseteq(a, b)$ Now τ this is hard wirluat expliat form! since $r \mid a$ and itb we have $(a, b) \subseteq(c)$.
$S_{1} a_{1}+\ldots+S_{n} a_{n} \in\left(r, a_{3}, \ldots, a_{n}\right) \quad$ and ...n7. deverent in $\left(r, a_{3}, \ldots, a_{n}\right)$ is in. $\left(a_{1}, \ldots, a_{n}\right)$.
(1)- Pour that $x^{4}+x^{2}+x+1$ is ineducile oner a.

B7. Gaur. Lemma, if it is inescmadle over \mathbb{R} it vill he inedmiste
wee Q. How to poced:

1. Shas that it dow uet have a not. Hence if it decompafer, it unst be as a mullifilication f plomemials of dyreer 2 .
2. Suppse it decompseev os a mullinitication th adpumials of dyare 2: Tiud contradiction. Ly unlifiping ant:
Atrinatively:
Ruk: A gidpuninal is rocicile ores x implics tant it is rodmelle over $\frac{X}{(p)}$ for all T. pime.
So if a polpwinal ss ircolidle over $\frac{x}{(\rho)}$ for sme ip grive, Anem it is ivelmidle over \mathcal{K} :
Lak at $p=3$ and paced as befres.
(5) - $f(x)=x^{5}-6 x+3$ over 0, \mp its splling fiod
(a) Pour $f(x)$ incuncillle.

Eirmstion's b $p=3$.

$$
\begin{aligned}
& \text { Reds of } f(x) \text { : } \\
& r_{1}, r_{2}, r_{3}, r_{4}, r_{5} \text {. }
\end{aligned}
$$

(3) Prove $\operatorname{Gal}(F / Q) \leqslant S_{5}$.

Element fo the Galois soup must permute rooter of $f(x)$.
Since F is the spiting field of $f(x)$, it 3 guenate h^{7} all.
the rats of $f(x)$ Not that an 7 too $\alpha, \beta \in G i(F / Q)$ nearer such that $\alpha\left(c_{i}\right)=\beta\left(c_{i}\right)$ for all $i=1, \ldots, s$ are equal.
$f_{0}, 7$
 cade dement of $G \mathcal{G}(\bar{F} / \mathbb{O})$ permits them, since the pars determined ${ }^{7} 7$ their action. on the coots, the wop:

$$
\begin{aligned}
\operatorname{Gal}(F / Q) & \phi \\
\alpha & S_{S} \\
& \phi(\alpha) \text { pouring } \\
& , \ldots, S \text { as }
\end{aligned}
$$

This ϕ is an injection.
(c) Prove that G continue a s- ode.

Let r be a eot of $f(x)$. Them (smee f is incomisle of aymes.
5) we har $[\mathbb{Q}(\underset{)}{ }, \mathbb{Q}]=5$. Sime F / Q os Galis is hare $|G|=[F: Q]=[F: \mathbb{Q}(r)][Q(c): Q]$ so $\overline{5}||G|$. Then we must have an derent of adder 517 Cumbn's Thooren. Sime $G \leqslant S_{S}$, the ont dements of δ_{S} with oroter 5 are the 5 -gdes, we must have tuat G have n 5 ogde.
(d) Prove thut \& costias a trumnsition.

Hime: $f(x)$ hav exaully 3 ral atsts, so $f(x)$ have exastly 2 complex men-ical cats.
Tor of the ats or tam of the from a $\pm i b$ with $b \neq 0$. Thin complex cercertion is an \bar{F}-antoumphism fixing ©

Real rats: r_{1}, r_{2}, c_{3} :

So complex conjuation is a tamposition in $G \leq S_{S}$.

Rens:

(e) Detirnime G.

Claicu: $G \cong \delta S$. Becume G has a S-ode and a tranespition

Remk: On of the equisaluent unoms of guenting S_{n} is haviug an u-c che and a tamspsction.
Let σ be our 5 -cele, τ the transpasition. Then is Soure pares of σ that suds an $\left(i_{1} i_{2}\right)$ a to b, for $a_{1} d \in\{!, \ldots, s!$.

$$
\begin{aligned}
& \sigma=\left(a_{1} a_{2} a_{3} a_{4} a_{5}\right) \\
& \sigma^{2}=\left(a_{1} a_{3} a_{5} a_{2} a_{4}\right) \\
& \sigma^{3}=\left(a_{1} a_{4} a_{2} a_{3}\right) \\
& \sigma^{4}=\left(a_{1} a_{5} a_{4} a_{3} a_{2}\right) . \\
& \sigma^{5}=i
\end{aligned}
$$

We mex 7 Anew anume tuat G untrime a 5-yde σ of the forme $r_{E}\left(i_{1}\right.$ iz is in is $)$. Siuce S_{S} is gurated b_{y} tamipsitions,
 mh to shas G hav (i,iz), (iri3), (is, i4), (in is) ${ }^{7} 7$ taking $i j$ cik for all $j \leq k:$

$$
\left(i_{j} i_{k}\right)=\left(i_{j} j_{j+1}\right)\left(i_{j+1} j_{j+2}\right) \cdots\left(i_{k-2} i_{k-1}\right)\left(i_{k-1} i_{k}\right)\left(i_{k-2} i_{k-1}\right) \cdots
$$

$$
\cdots\left(i_{j+1 j_{j 2}}\right)\left(i_{j+1}, i_{j}\right) .
$$

Well man: $\quad p^{j-1}-(j-1)$ fo $\tau=\left(i i i_{2}\right)$.
(C) Prove $Q(\sqrt[4]{2})$ is ust the siliting fidd at amp Qd) manid mer ©.
We do this $\}$ shasing that ©($(\sqrt{2}) / \mathbb{Q}$ is ut notual,
 of amy ply ymial over Q.
We shas that the minimal xipminal of $\sqrt[4]{2}$ hav \sim
 so it canct split.an Q($\sqrt[4]{2})$. Thme b deficition $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is unt morual.

$$
\begin{aligned}
f(x) & =(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-\sqrt[i]{2})(x+i \sqrt[4]{2})= \\
& =\left(x^{2}-\sqrt{2}\right)\left(x^{2}+\sqrt{2}\right)=x^{4}-2 \quad \text { (or } \\
f(\sqrt{2}) & =0
\end{aligned}
$$

(or ure eduction ($\pi /(s)$)
This $f(x)$ is imencuille y. Eircustin's sith $p=2$.
Thir $f(x)$ is the miminal of onmid of $\sqrt[3]{2}$ ant her $i \sqrt[4]{2} \sim$ non-ral rat.

