$J_{\text {mant }} 2015:$
(17) $A, B, C R$-mods; $O \rightarrow A \xrightarrow{i} B+C \longrightarrow 0$,
prove that there is om R-mb hom. $j c \rightarrow B$

$q: B \rightarrow A$ suh that $q^{i=1} A$:
Howeytord IV.1.18
 then is a j ar atove: In partionare this implies $B \cong A O C$ av R-meds.
As loy av we are in an abdian antyoi 7 . a short exact sequener splits iff the middle tosen as dimet sem of the athers. Nole that R-and is ar ablime atgor?
Steps:

1. Shue that if $\operatorname{monh} a j$ existy them $B \cong \triangle O C$.
2. Shem that if $B \cong A \subseteq C$, then there 3 m desired q.
3. Th diegrame:

$N_{\text {ow }}$ since $j c \rightarrow B$ is oith $j=1 c$ acs i is iajelive, we have a mophisur of $A O C \longrightarrow B$
Poor this jarme,$f \quad f(a, c)=i(a)+j(c)$.
Heyphord IV/13: B_{7} te Slat Five Lemem, if 3 aur 2 -iso.
Ntecrantiond, diagram dhase.
4. S ch $f: \operatorname{soc} \rightarrow B$ is R-iso . The diagrame:

commes Didine $q: B \rightarrow A$ as $q:=\pi f^{-1}$.
$V_{(\omega)}: \quad q i(a)=\left(\pi_{1} f^{-1}\right)\left(f u_{1}^{\prime} i_{\Delta}\right)(a)=\left(\pi_{1} f^{-1} \eta_{1}^{-1}\right)(a)=$

$$
=\left(\left.\pi z_{1}\right|_{A} ^{-1}\right)(a)=\left(\left.\left.\right|_{A} ^{1}\right|_{A} ^{-1}\right)(a)=a \text {. }
$$

(8)- R cums ring with 1, I prime ideal, $S=R, I$. Pave that $S^{-1} R$ is leal

Namefford III 4 . 11 (ii)
Recall: A sing is local alumeare it hew a migque maximal ideal: The deals of R that are prime are exactly tine prime ideas that are disjoint from S.

Let M be a maximal ideal of $S^{1} R$. Then M is primer, So we cur write $M=S^{-1} T$ for some prime deal $T \leqq R$, and also $T \subseteq I$. Hence $S^{-1} T \subseteq S^{-1} I$, an since $S^{-1} I \neq S^{-1} P$ with $S^{-1} T$ maximal, we mut have $M=S^{-1} T=S^{-1} I$. So $S^{-1} I$ is the imiqui minxinal ideal of $S^{-1} R$.

Ayat $215:$
O- Pour tut then are at mut for gopp of ade 36 antaring a dount of oder 9 .
 smindinct podends mot tre ilve.
$I G=3_{0} 6=2 \cdot 9 \cdot 17=2 \cdot 5 \cdot 17$.
 Shos shop $\pi /(1)$.
By the Thich S7 law Thereme or have: $n_{3}=1,54$ i $n_{17}=6,18$:

 and $w_{3} \neq 34$.

 the wan- idcuitity davints are it leat $16 \cdot 18+6 \cdot 34=492>306=1 G 1$.

This mens tuat then 3 alums a migur Sflea-7 of mipur Splow anjump a shide mest be wamal.

H_{3}, then te sumidicedt paduect. $N_{17} x_{p} H_{3}<G$, ahere

$$
\phi: H_{3} \rightarrow A+\left(N_{17}\right), \text { i.e: } \phi: x /(1) \rightarrow \pi /(16)
$$

Kup this Sime 9×16, ϕ muth b trimal $H_{\text {mace }} N_{17} \times H_{p} H_{3}=N_{17} \times H_{3}=$ $=\pi /(19) \times \pi /(a)$. corent

Shlon-17- ajourp H_{77}, the smidiect parat. $N_{3} \times 1, H_{13} \angle G, 50$
$\phi: H_{17} \rightarrow A t\left(N_{s}\right)$, alee $\left|A_{0}\left(N_{3}\right)\right|$ is ut diristle by 17 .
must λ_{5} he thimal, hemes: $N_{3} \times 1 H_{17}=\pi /(9) \times \frac{\pi}{(17)}$:
W_{c} lume momp $N=x /(a) \times \frac{\pi}{(A)}$ with $[G N]=2$, so $N \Delta G$.
Therfor for a Sflow-2-cojayp H_{2} or hae that $G \cong N \times{ }_{p} H_{2}$
for sane $\phi: \underset{21}{H_{2}} \longrightarrow \operatorname{Ant}(N)$. Not thut $\phi(1)$ hav adec 2 , ans $\operatorname{Aut}(N)=\operatorname{sut}\left(\frac{\pi}{(a)} \times \frac{\pi}{(17)}\right)=\frac{\pi}{(21} \times \frac{\pi}{(3)} \times \underset{1}{x}(16)$, so :
(i) $\phi(1)=(1,0,0)$,
(ii) $\phi(1)=(0,0,8)$,
(iii) $\phi(1)=(1,0,8)$,
(iv) ϕ hivial: $\phi(1)=(0,0,0)$.

Hence $G \cong N \nsubseteq \phi H_{2}$ for at most foner ϕ.
(2) $A \in \mathbb{K}^{n \times-}$ with (iij) mntr $a_{i j}, x *\left(x_{1}, \ldots, x_{n}\right)$, define x^{A} to be $\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}, \ldots, x_{1}} x_{1}^{a_{n} n} \ldots x_{n}^{a_{n}, n}\right)$. Ansmex $x^{A B}=\left(x^{A}\right)^{B}$.
(a) $P_{\text {nex }}$ thut chen $\operatorname{def}(A) \in 4 \pm 1$, ant k fict , thm $m_{k}(x):=x^{*}$ dutimes) are antonompisum of $\left(k^{x}\right)^{n}$.

Quation to ank: whit opiodimin shimld
$\int 1$. we conider or $\left(k^{x}\right)^{n}$?
(*) No x_{y} is contimate-wire mentighiation:
Also for $x, 7 \in\left(k^{x}\right)^{\alpha}$, them :

$$
\left.\left.\left.m_{N}(x)\right)=\left((x, y)^{a_{11}} \cdots\left(x_{n}\right) \cdots\right)^{a_{n 1}}, \cdots,\left(x, y_{1}\right)^{a_{1 n}}\left(x_{n}\right)_{n}\right)^{a_{n n}}\right)=
$$

$$
\begin{aligned}
& =\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n 1}}, y_{1}^{a_{n}} \cdots y_{n}^{a_{n 1}}, \ldots, x_{1}^{a_{1 n}} \cdots x_{n}^{a_{n n}}, y_{1}^{a_{n n}} \cdots y_{n}^{a_{n n}}\right)= \\
& =\left(x_{1}^{a_{11}} \cdots x_{n}^{a_{n i}}, \cdots, x_{1}^{a_{1 n}} \cdots x_{n}^{a_{n n}}\right)\left(y_{1}^{a_{11}} \cdots y_{n}^{\text {and }}, \cdots, y_{1}{ }^{\text {ann }} \cdots y_{n}^{a_{n n}}\right)= \\
& =m_{A}(x) m_{A}(y)
\end{aligned}
$$

Nate: $\left(x^{A}\right)^{A^{1}}=x^{A A^{-1}}=x=x^{A+A}=\left(x^{A^{-1}}\right)^{A}$, so m.As is the inverse of
$m_{A s} \quad A^{-i}=\frac{\operatorname{adj}\left(A_{j}\right)}{\operatorname{det}(A)}= \pm \operatorname{adj}(A) \in X^{n \times u}$.
(b) For arstary $A \in x^{4 \times-}, m_{k}$ is an andonophism of $U=4-1,1^{\prime n} \leq\left(\mathbb{Q}^{x}\right)^{n}$.

Find and pave men explicit formenla for the cardinality of the grostiment gawp
$U / \operatorname{Var}\left(m_{A}\right)$ or a function of the $T /(2)-\operatorname{rank}$ of the ind 2 reduction A.
Question to ark: 87 definition! the
Notice that $U=41,-11 \times \cdots \times 31,-1 \frac{y}{x}$. what is this? $\frac{N}{(2)}-\operatorname{sonk}$ of A os the rank of $\Delta \mathrm{nal}_{2}$

The mod 2 reduction of $A \in \mathcal{X}^{u \times n}$ is:

Tim $\operatorname{det}(A \bmod 2)=\operatorname{det}(A) \bmod 2$.
$A B \operatorname{mad} z=(A \operatorname{mad} 2)(B \bmod r)$.
What the gallon is acing is to compete $\left|U / \operatorname{Var}\left(\omega_{A}\right)\right|$, ant sine $|U|=2^{\text {n }}$, we. only ham to compute $\| \operatorname{lar}\left(m_{A}\right) \mid$.
$m_{A} \vdots U=41,-14 \times \cdots \times 5,-1,-1!\longrightarrow\left(\mathbb{Q}^{x}\right)^{n}$, so we ane Waking at
dement s $n \in U$ such that. $m_{A}(u)=(1, \cdots, 1)$.

$$
\begin{aligned}
& n^{k}=(1, \ldots, 1): \\
& \left((\pm)^{n u n} \ldots(\pm 1)^{n, n} \ldots,(\pm 1)^{a n \cdots} \cdots(\pm 1)^{a m x}\right)=(1, \ldots,!)
\end{aligned}
$$

An ne U is a solution n of $m_{A}(n)=(l, \cdots$,$) if it. \pi$ a Slukion of m_{A} med $_{2}(x)=(1, \cdots, 1)$, become x the ant thing that weather is whether ain. is It or even.
Home it plier to lace at:

$$
{ }_{A \cdot m d_{2}}: U=41,-14 \times \cdots \times h 1,-11_{1} \longrightarrow\left(Q^{*}\right)^{w}
$$

Now wog's happens: ore the Sigh factiestione of A_{1} which songs

Suching mor
$P A Q \quad A=P D Q$ wher P, Q are ianctitle with $\operatorname{det}(P)= \pm 1=\operatorname{det}(0) \mathrm{cml}$
 we cur we the rake of O inteat of the pakk of A (since P, O are
 are. inerctitle, $b_{7}(a)$ m.p, m.e are antourophisms, so :

$$
\left|\operatorname{Var}\left(m_{A}\right)\right|=\left|\operatorname{Var}\left(m_{0}\right)\right| .
$$

 $m_{g}\left(n_{1}\right)=\left(u_{1}^{d_{11}} \ldots, u_{n}^{d_{n}}\right)$, so the shmous to $m_{0}(m)=(1, \ldots, 1)$ is giom $\}$, these $n \in U=41,-1\left\{\times \cdots \times\{1,-1\}\right.$ such that $u_{i}=$? whemene dii $=1$, but. $x_{i}= \pm 1$ whuneers $d_{i i}=0$.

Sanpe. Mad 2 hive me our in the digenal, shich s exactl) $\operatorname{rank}(D) \bmod 2)=\operatorname{rank}\left(A_{\operatorname{mad} 2}\right)$. Then $\left|\operatorname{kar}\left(m_{D}\right)\right|=2^{n-r}$.
 where $r=\operatorname{rank}(A \operatorname{mad} 2)$.
(0) $-k$ find

Now LVI is imealy indopudent. Sine ewerg livedl indequment set is contrined in a maximal liment) indyulent mbet of k": But even? Hayerored IV-2.4.
 Hemeforl IV.2.3.
maximad limed) indpudent a colect contrius v.and hav a dements (simece.
hais of k^{n} have exaetl) u devents), write it $\left\langle\sqrt[v]{1} \sqrt{2}, \ldots, v_{n}\right\}$.

2. Ever maxxinal 1.i. auset a a lasts.
3. Bais of th (buer exaeth) m demerts.
 U,V $\in F^{\text {rum }}$ with V imertikle ant U uper finguler.

 cosidring. the vareal or the alerrul of A depuliay an atwethe U is apper ir Waser trimgler
 (ie. there is om murtille manhix. V cold that $A=V^{-1} J V$)
 wathics empect! with a mipu fomid of phominets if

 do men dyyonem.

(4) - Givene R-and $A, A_{1}^{\prime} B, B_{1}^{\prime}, C, C^{\prime}$ and R-ham $f, f_{1}^{\prime} g, g^{\prime}, \alpha, p, \gamma$ with α, γ monomophisms, and a commatuive diagrame

exact. now cxaet sus
grove that is is a monowerphism.
Let $b \in B$ suck that $~ \beta(b)=0$. Since $g^{\prime} \beta=\gamma g$ we have:
$0=g^{\prime} \beta(b)=\gamma_{g}(b)$. Thuv $g(b)=0$ simee γ is monomosphism: Hance: $b \in \operatorname{Var}(g)=\operatorname{ine}(f)$, so theren is some $a \in A$ such that $f(a)=b$. Since $f^{\prime} \alpha=\beta f$ we have:
$0=\rho(l)=\int f(a)=f^{\prime} d(a): X$ ov f^{\prime} is monowiphism ? expetuen of the loltion (ou) so $\alpha(a)=0$. Since α. is monomorifliser we have $a=0$. So. $b=f(a) \equiv f(0)=0$:
(5) : $p, q \in \mathbb{N}, i$ mive, q pime paver, \mathbb{F}_{q}. fild with q denemts.
(a) If $x^{p}{ }_{-x-1}$ imandarisle in $\mathbb{F}_{p}[x]$ them paves:
(i) $\phi(1):=y^{p^{n}}$ is montourorhisur of $\mathbb{F}_{p}[x] /\left\langle x f^{n}-x-1\right\rangle$:
(ii). ϕ (?) is the idmatity wap on. $\mathbb{F}_{p}[x] /\left\langle x P_{-x-1}\right\rangle$.
(i) The mep $\phi: \mathbb{F}_{p}[x] /\left\langle x p^{n}-x-1\right\rangle \longrightarrow \mathbb{F}_{p}[x] /\left\langle x p^{n}-x-1\right\rangle$ is an $y \longmapsto y$?
n-fud itcation of the mup

$$
\begin{array}{rl}
\psi: \mathbb{F}_{p}[x] /\left\langle x ?^{n}-x-1\right) & \longrightarrow \mathbb{F}_{p}[x] /\left\langle x ?^{n}-x-1\right) \\
y & y ?
\end{array}
$$

Notice tuat the duatristixe of. $F_{p}(x) /\left\langle\left. x\right|^{4}-x-1\right\rangle$ is p (areux)
of seing this is heane $\mid F_{p}(x) /\left\langle\left. x\right|^{n}=x-1\right\rangle$ is a fold axtminon of
(Fip , out them the duraderstio ment be presered):
Homecfind IV.6.
Haugerford. I $5: 2$
This menons that for all $y, z \in \mid F_{g}(x) /\left\langle\left. x\right|^{n}-x-1\right\rangle$ we here $\left.(y z)^{?}=\right)^{?}$? . and $(y+z)^{p}=7^{p+z^{i}}$.

(ii) Since $x^{p^{n}}-x_{-1}$ is zecre in $F_{p}(x) /\left\langle\left. x\right|^{\mu}-x-1\right\rangle$, wee buet tuat:

$$
\phi(x)=x{p^{n}}^{n}=x+1 \text { in } \mathbb{F}_{p}(x) /\left\langle\left. x\right|^{n}, x-1\right\rangle \text {. }
$$

Also. m> $a \in \mathbb{F}_{p}$. satififies $a P=a_{1}$. Hemefored I IS:3.
and ther $\phi(a)=\sim$
Claim: p anisfies $\phi^{(n)}(x)=x+u$ for all $n \in \mathbb{N}$. We sum tue for $n=1$. Anme $\phi^{(j-1)}(x)=x+(j-1)$, to ree the ane $n=j$ ntice:

$$
\begin{aligned}
\phi^{(j)}(x) & \left.=\phi(x+(j-1))=\phi(x)+\phi(j-1)=x^{q^{n}}+(j-1)\right)^{n}= \\
& =(x+1)+(j-1)=x+j
\end{aligned}
$$

So h indmation $\phi^{(x)}(x)=x+p=x$. This means that $\phi^{(p)}$. fireor x_{1}. so it must dso fix $x^{2}, x^{3}, \ldots, x h^{n}-1$, Now $\left.41, x, x^{2}, \ldots, x\right\}^{n}-14$ fram ar bais of $F_{p}(x) /\left\langle\left. x\right|^{n}-x-1\right\rangle$ or $\mid F_{p}-0$ s. . Henee $\phi(y)$ firer all the bais dements. W\sqrt{e} also soo p fixes \mathbb{F}_{p}, ther $\phi(\overline{)}$ dso fixer \mathbb{F}_{p}. This alls an to $\phi(\varphi) f_{\text {ixing }} \mid F_{p}(x) /\left\langle\left. x\right|^{4}-x-1\right\rangle$, av desinet.
(b) Suppe f imedurite in $\mathbb{F}_{\text {F }}[x]$, puor tat f divides $x^{\hat{f}}-x$ if ut on) of the dyen of f dides n.
 Heme cos! D. 5. 6 :
 so $\left[\mathbb{F}_{7}\right.$: $\left.\mathbb{F}_{7}\right]=n$. Tale k the pilining ficld of f, sives $f \mid x^{n}-x$ we have $K \subseteq \mathbb{F}_{7^{n}}$: Sine f is inctaille over if we muth here $\mathbb{F}_{q} \subseteq k$. Then:

$$
n=\left[\mathbb{F}_{q}: \mathbb{F}_{q}\right]=\left[\mathbb{F}_{q}: \mathbb{k}\right]\left[k: \mathbb{F}_{q}\right]=\left[\mathbb{F}_{q}: k\right] \cdot d y(f)
$$

so $d y(j) / n$.
\Leftrightarrow ($\operatorname{Sef} d=d y(g) / n$, we first shao that f livides $x^{7^{d}-x}$. For this canclur $\mathbb{F}_{q}\left(x, 3 /\langle f)\right.$ a fodd of q^{d} duments. Them $x^{q^{f}}=x$ in $\mathbb{F}_{f}[x] /\langle f)$, so f dinides. $x ?^{1}-x$: Hamefor : $\pm 5: 3$.

Since d/w wems:

$$
q^{n-1}=\left(q^{d}-1\right)\left(q^{n-d}+q^{\frac{n^{2}}{d}}+\cdots+q^{n-j}+\cdots+q^{d}+1\right)
$$

ashich implier $f^{d} 1$ divides $q^{n}-1$. We une write:

$$
\begin{aligned}
x^{q^{n}-1}-1= & \left(x^{q^{-}-1}-1\right)\left(x^{q^{x}-1}-\left(q^{d}-1\right)+x^{q^{n}-2}=\left(q^{d}-1\right)\right. \\
& \left.\left.+x^{q^{n}-j}-j^{d}+1\right)+\cdots+x^{q^{n}-1}+1\right)
\end{aligned}
$$

This julds that $x\left(x^{q^{-1}}-1\right)$ divides $x\left(x^{q^{-1}-1}-1\right)$
rof divides $x^{d}-x$, whide in tur divider $x^{\vec{y}-x}$.
(c) Pour that $x^{47}-x-13$ nat iwedmille in $\mathbb{F}_{47}[x 1$ for $n \geqslant 2$

a fild $\mathbb{F}_{47}\left(x .3 /\left\langle x^{47^{n}}-x-1.\right\rangle\right)$ is the identil) Then:

$$
\begin{aligned}
& x^{i 7^{27 \pi}-x \equiv 0 \text { ned } x^{47^{4}}-x-1 \text {, that is }} \\
& x^{47^{n}}-x-1 \text { divides } x^{47^{47 w}-x}
\end{aligned}
$$

Then by pret. (b) the dy pe of $x^{47}-x-1$ divides $47 x$.
This is a contandiciton since $47^{* 1} 147 w$ for n ? 2

