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Exercise 1

We solve by successive Picard iterations the initial value problem:{
x′(t) = x

x(0) = 1

beginning with the function x0(t) = 1. Now:

x1(t) = 1 +

∫ t

0
ds = 1 + t

x2(t) = 1 +

∫ t

0
(1 + s)ds = 1 + t+

t2

2

x3(t) = 1 +

∫ t

0
(1 + s+

s2

2
)ds = 1 + t+

t2

2
+
t3

6

so we now prove by induction that the general form is xn(t) =
∑n

k=0 t
k/k!. We already

have n = 0, 1, 2, 3, so assuming true for any other n, we compute:

xn+1(t) = 1 +

∫ t

0
xn(s)ds = 1 +

∫ t

0
xn−1(s)ds+

∫ t

0

sn

n!
ds

= xn(t) +
sn+1

n!(n+ 1)

∣∣∣∣∣
t

0

= 1 + t+ · · ·+ tn

n!
+

tn+1

(n+ 1)!

exactly what we desired. Thus taking limits:

x(t) = lim
n→∞

xn(t) =
∞∑
k=0

tk

k!
= et.
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Exercise 2

We show that the fields arising from turning non-autonomous systems into autonomous
ones are always non-singular at all points.

Consider x′(t) = F (t, x) a non-autonomous system. Rewriting s = t we obtain the
system: {

s′(t) = 1

x′(t) = F (s, x)

so rewriting y = (s, x) and G(y) = (1, F (y)) we obtain the equivalent system y′(t) =
G(y). Since the first component of G(y) is always a 1, hence non-zero, we always have
G(y) 6= 0, hence the new system is always non-singular.
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Exercise 3

Deduce the existence and uniqueness theorem from the theorem on rectifying a vector
field near a non-singular point. For this, we will first remark that the system x′(t) = F
with x(t0) = x0 for F ∈ R a constant has a unique solution (easily obtained by integrating
and imposing the initial condition), namely x(t) = Ft + x0 − Ft0. Using a rectifying
diffeomorphism, we will reduce us to this case, where we already know the result.

Let Ω ⊂ Rn an open domain, (a, b) ⊂ R open, F (t, x) and DxF (t, x) continuous on
(a, b) × Ω. Given any (t0, x0) ∈ (a, b) × Ω, we want to see that there exists a unique
solution x(t) of the initial value problem x′(t) = F (t, x) and x(t0) = x0 defined in a
neighborhood of t0.

For this, we first transform the system into an autonomous one. Since we can always
do this as shown in the Exercise above, we may assume that F already has no dependence
on t, that is, we want to solve x′(t) = F (x) with x(t0) = x0.

1. If F (x) has x0 as a singular point, then we add s = t with s′(t) = 1 and s(t0) = t0
to our system, resulting in: 

x′(t) = F (x)

s′(t) = 1

x(t0) = x0

s(t0) = t0

which as noted in Exercise 2 is a non-autonomous system. We are thus reduced to
the following case.

2. If F (x) does not have x0 as a singular point, then the rectification theorem gives
us a local diffeomorphism G of class Cr with G(x(t)) = y(t) and transforms our
system into y′(t) = DG(G−1(y))F (G−1(y)), constant, and y(t0) = G(x(t0)) = y0.
This system is of the form we remarked above, thus we can indeed find y(t) a
unique solution. This means that x(t) = G−1(y(t)) is the unique solution of our
original system, valid only near a neighborhood of x0 since G is only local. This
proves what we wanted.
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Exercise 4

We prove the dependence on parameters theorem using the rectification theorem. Again,
we keep in mind the system remarked in Exercise 3.

Let the vector field F (x, µ) (where µ belongs to an open domain of a space Rm) be of
class Cr. Let also F (x0, µ0) = 0. We prove that the (unique) solution x(t, t0, x, x0, µ) of
the initial value problem x′(t) = F (x, µ) and x(t0) = x0 depends differentiably of class
Cr on (t, t0, x, x0, µ) for sufficiently small |t− t0|, |x− x0|, |µ− µ0|.

For this, we note that we may again suppose that F does not have any dependence
on t, and we now transform the system to consider µ as part of the initial conditions,
by rewriting z(t) = µ, which gives us:

{
x′(t) = F (x, t)

x(t0) = x0
becomes


x′(t) = F (x, z)

z′(t) = 0

x(t0) = x0

z(t0) = µ

so we only need to prove the dependence on time and initial conditions for an autonomous
system x′(t) = F (x) and x(t0) = x0.

By the reasoned in Exercise 3 and in that notation, given an autonomous system
x′(t) = F (x) and x(t0) = x0, we notice that the solution y(t) arises from a system
that has dependence C∞ with respect to time and initial conditions. This means that
the solution x(t) = G−1(y(t)) depends differentiably Cr with respect to time and initial
conditions, since G is only a local diffeomorphism of class Cr and we may lose smoothness.
This locality guarantees the smoothness for sufficiently small |t− t0|, |x− x0|, which is
what we wanted to prove.
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Exercise 5

A global rectifying theorem does not hold. Consider the phase curves given (which have
a top asymptote going from left to right, a bottom asymptote going from right to left
and curves in the middle that begin on the right, go to the center and then return to the
right) and suppose we have a diffeomorphism that smoothly transforms it into straight
curves facing the same direction. This is the same thing as saying that we can smoothly
bend the curves above to make the ones in the middle of the two asymptotes straight.

What happens to the asymptote above the curves is that, when we bend the middle
curves to straighten them so that they come from the bottom and end at the top, bending
the top part of the middle curves forces the top asymptote to smoothly move to the left,
changing its position so that it comes from the bottom and ends at the top.

In a similar way, what happens to the asymptote below the curves is that, when we
bend the middle curves to straighten them so that they come from the bottom and end
at the top, bending the bottom part of the middle curves forces the bottom asymptote
to smoothly move to the left, changing its position so that it comes from the bottom
and ends at the top.

Notice that since both are asymptotes, none of the curves are really touching them, so
they don’t lie among them, they lie “aside” on the left. Hence they cannot be separated
by any curves (since the movements we made to the asymptotes were symmetrical and
did not involve each other). This means that by symmetry the diffeomorphism should
map both asymptotes to the same curve in the final diagram. However, this is clearly
a contradiction with this transformation being a diffeomorphism, which needs to be
bijective. Hence, a global rectifying theorem does not hold, as we claimed.
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Exercise 6

An initial value problem for an ODE that has no solution is:
x′(t) =


1 if x > 0

0 if x = 0

−1 if x < 0

x(1) = 1

since to satisfy x′(t) = 1 and x(1) = 1 we would need x(t) = t, which does not satisfy
the rest of the conditions. We have no solution, as desired.
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Exercise 7

A boundary value problem for an ODE that has no solution is:
x′(t) = 1

y′(t) = −1

x(0) = 0

x(1) = 0

since a general solution of the first equation is x(t) = t + C for some constant C ∈ R,
but when we try to determine this constant we obtain two possible values: if x(0) = 0
then C = 0 but if x(1) = 0 then C = −1, a contradiction.

If this is not a valid solution, then the system:
x′′(t) = −x
x(0) = 0

x(2π) = 1

which has a general solution of the form x(t) = C1 cos(x) + C2 sin(x) and again the
constants cannot be properly determined: if x(0) = 0 then C1 = 0 but if x(2π) = 1 then
C1 = 1, a contradiction.
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Exercise 8.1

We classify the partial differential equations. For the linear equations we have:

Equation Classification Order

1 Linear 2
2 Linear 2
3 Linear 1
4 Linear 1
5 Linear 2
6 Linear 2
7 Linear 2
8 Linear 2
9 Linear 2
10 Linear 2
11 Linear 2
12 Linear 2
13 Linear 3
14 Linear 4

For the non linear equations we have:

Equation Classification Order

1 Fully Nonlinear 1
2 Semilinear 2
3 Quasilinear 2
4 Quasilinear 2
5 Fully Nonlinear 2
6 Fully Nonlinear 1
7 Quasilinear 1
8 Quasilinear 1
9 Semilinear 2
10 Quasilinear 2
11 Semilinear 2
12 Semilinear 3
13 Semilinear 2
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Exercise 8.3

We prove the multinomial theorem by induction on the number of variables using the
binomial theorem. Since this notation is horrid, we transform it to something under-
standable: given a multiindex α = (α1, . . . , αn), having a sum over |α| = k is equivalent
as having a sum over α1 + · · · + αn = k, having xα is having xα1

1 · · ·xαn
n and having(|α|

α

)
with |α| = k is having k!/α1! · · ·αn!, which is exactly

(
k

α1,...,αn

)
. The dictionary

above tells us that
∑
|α|=k

(|α|
α

)
xα =

∑
α1+···+αn=k

(
k

α1,...,αn

)
xα1
1 · · ·xαn

n . We thus can just
prove the usual binomial theorem (which is the right hand side), and the above will
immediately give us the result we wanted.

When n = 1, we have:

xk1 =
k!

k!0!
xk1 =

∑
α1=k

(
α1

α1

)
xα1
1

as desired. Assume it is true for n, we check n+ 1:

(x1 + · · ·+ xn+1)
k = (x1 + · · ·+ (xn + xn+1))

k

=
∑

α1+···+αn−1+β=k

(
k

α1, . . . , αn−1, β

)
xα1
1 · · ·x

αn−1

n−1 (xn + xn+1)
β

=
∑

α1+···+αn−1+β=k

(
k

α1, . . . , αn−1, β

)
xα1
1 · · ·x

αn−1

n−1
∑

αn+αn+1=β

(
β

αn, αn+1

)
xαn
n x

αn+1

n+1

=
∑

α1+···+αn−1+αn+αn+1=k

(
k

α1, . . . , αn−1, β

)(
β

αn, αn+1

)
xα1
1 · · ·x

αn−1

n−1 x
αn
n x

αn+1

n+1

=
∑

α1+···+αn+1=k

(
k

α1, . . . , αn+1

)
xα1
1 · · ·x

αn+1

n+1

which is exactly what we wanted. Thus, by the dictionary above, we just proved:

(x1 + · · ·+ xn)k =
∑
|α|=k

(
|α|
α

)
xα

as desired.
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Exercise 8.4

We prove Leibniz’s formula. For this, we first note that given any two smooth functions
f, g : Rn −→ R, restricting us to a single variable and using the rule of differentiation
with respect of a multiplication, we obtain that for every i = 1, . . . , n:

∂αi
xi (fg) =

∑
γ+η=αi

(
αi
γ, η

)
∂γxif∂

η
xig =

∑
γ≤αi

(
αi
γ

)
∂γxif∂

αi−γ
xi g.

which is a result from Calculus with the notation adapted to our needs. We now abuse
this for u, v : Rn −→ R smooth functions:

Dα(uv) = ∂α1
x1 · · · ∂

αn
xn (uv) = ∂α1

x1 · · · ∂
αn−1
xn−1

 ∑
βn≤αn

(
αn
βn

)
∂βnxnu∂

αn−βn
xn v


= ∂α1

x1 · · · ∂
αn−2
xn−2

 ∑
βn≤αn

(
αn
βn

) ∑
βn−1≤αn−1

(
αn−1
βn−1

)
∂βn−1
xn−1

∂βnxnu∂
αn−1−βn−1
xn−1

∂αn−βn
xn v


where we have used ∂βnxnf and ∂αn−βn

xn g as the new two functions. This process can be
repeated until we obtain:

Dα(uv) =
∑

βn≤αn

(
αn
βn

)
· · ·

∑
β1≤α1

(
α1

β1

)
∂β1x1 · · · ∂

βn
xnu∂

α1−β1
x1 · · · ∂αn−βn

xn v

=
∑
βi≤αi
i=1,...,n

α1!

β1!(α1 − β1)!
· · · αn!

βn!(αn − βn)!
DβuDα−βv

=
∑
β≤α

α1! · · ·αn!

β1! · · ·βn!(α1 − β1)! · · · (αn − βn)!
DβuDα−βv

=
∑
β≤α

α!

β!(α− β)!
DβuDα−βv =

∑
β≤α

(
α

β

)
DβuDα−βv

where we set β = (β1, . . . , βn). This is the result we wanted to prove.
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Exercise 8.5

We prove Taylor’s formula. Let f : Rn −→ R be a smooth function, fix x ∈ Rn and
consider g : R −→ R given by g(t) = f(tx). We can apply Taylor’s one dimensional
formula with residue around t = 0 and obtain:

g(t) = g(0) + g′(0) + · · ·+ g(n)(0)

n!
tn +

g(n+1)(ξ)

(n+ 1)!
tn+1.

By the chain rule, we have that:

g′(t) =
∂f(tx)

∂x1

∂(tx1)

∂t
+ · · ·+ ∂f(tx)

∂xn

∂(txn)

∂t

=
∂f(tx)

∂x1
x1 + · · ·+ ∂f(tx)

∂xn
xn = (x1, · · · , xn)

(
∂f(tx)

∂x1
, · · · , ∂f(tx)

∂xn

)
= (x1, · · · , xn)

(
∂

∂x1
, · · · , ∂

∂xn

)
f(tx) = xDxf(tx)

where we use a more convenient operator notation in this instance. Now, since x is fixed,
it does not depend on time, and thus:

g(k)(t) =
dkf(tx)

dtk
=
dk−1(xDxf(tx))

dtk−1
= (xDx)

dk−1f(tx)

dtk−1

= · · · = (xDx) · · · (xDx)(xDxf(tx)) = (xDx)kf(tx)

since the derivatives commute. Since by the multinomial theorem we have:

(xDx)k =
∑
|α|=k

(
|α|
α

)
(xDx)α =

∑
|α|=k

k!

α!

(
x1

∂

∂x1

)α1

· · ·
(
xn

∂

∂xn

)αn

=
∑
|α|=k

k!

α!
xα1
1

∂α1

∂xα1
1

· · ·xαn
n

∂αn

∂xαn
n

=
∑
|α|=k

k!

α!
xα1
1 · · ·x

αn
n

∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n

=
∑
|α|=k

k!

α!
xαDα

x

This means:

f(x) = g(1) =

n∑
k=0

g(k)(0)

k!
1k +

g(n+1)(ξ)

(n+ 1)!
1n+1

=

n∑
k=0

1

k!

∑
|α|=k

k!

α!
xαDα

xf(0) +
1

(n+ 1)!

∑
|α|=n+1

(n+ 1)!

α!
xαDα

xf(ξx)

=
∑
|α|≤n

1

α!
xαDα

xf(0) +
∑
|α|=n+1

1

α!
xαDα

xf(ξx) =
∑
|α|≤n

1

α!
xαDα

xf(0) +O(|x|k+1),

because the last term behaves like xn+1 when x goes to 0 because the coefficient of xα is
Dα
xf(ξx)/α!, which is differentiable in x thus continuous and with limit Dα

xf(0)/α! ∈ R,
not affecting the speed of the growth. This is the desired result.
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