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Exercise 1 (1)[1]

We solve the initial value problem:{
ut + bDu+ cu = 0 in Rn × (0,∞)

u = g in Rn × {t = 0}

for functions u : Rn × (0,∞) −→ R, g : Rn −→ R and constants c ∈ R, b ∈ Rn.
We notice that the multiplication bDu can be translated as the directional derivative

of u in direction b, meaning that if we parametrize a general line with slope b, namely
we fix x ∈ Rn, t ∈ (0,∞) and consider the graph of (x+ bs, t+ s) when s ∈ R, then our
initial value problem can be translated into a system of ordinary differential equations.
For this, we set z(s) = u(x+ bs, t+ s) and notice that:

∂z(s)

∂s
= Du(x+ sb, t+ s)b+ ut(x+ sb, t+ s) = −cu(x+ sb, t+ s) = −cz(s)

z(0) = u(x, t)

meaning that z(s) = z(0)e−cs so choosing s = −t we obtain:

u(x, t) = u(x− bt, 0)e−ct = g(x− bt)e−ct

the formula we desired.
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Exercise 2 (2)[1]

We prove that Laplace’s equation is rotation invariant. Let A an orthogonal n×n matrix,
x ∈ Rn with ∆u(x) = 0 for certain u : Rn −→ R. Given y = Ax we set v(x) = u(y). We
compute for each 1 ≤ i ≤ n:

vxi(x) = uxi(y) =

n∑
j=1

∂u(y)

∂yj
∂yj

∂xi
=

n∑
j=1

∂u(y)

∂yj
aji

since yj = (Ax)j = aj1x1 + · · ·+ ajnxn for each 1 ≤ j ≤ n. Moreover as above:

vxixi =

n∑
j=1

∂

∂xi

(
∂u(y)

∂yj
aji

)
=

n∑
j=1

aji

n∑
k=1

∂

∂yk

(
∂u(y)

∂yj

)
∂yk

∂xi
=

n∑
j=1

n∑
k=1

∂2u(y)

∂yk∂yj
ajiaki

meaning that:

∆v(x) =

n∑
i=1

vxixi(x) =

n∑
i=1

n∑
j=1

n∑
k=1

∂2u(y)

∂yk∂yj
ajiaki =

n∑
j=1

n∑
k=1

∂2u(y)

∂yk∂yj

n∑
i=1

ajiaki

=

n∑
j=1

∂2u(y)

∂yj∂yj
= ∆u(y) = 0

because A orthogonal means AAT = 1 hence
∑n

i=1 ajiaki = δjk for all 1 ≤ j, k ≤ n, and
u is harmonic. This is what we wanted.
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Exercise 3 (3)[1]

We modify the proof of the mean value formulas to obtain an particular expression for
u(0) when n ≥ 3, provided −∆u = f in B(0, r) and u = g in ∂B(0, r).

In a similar way as indicated, we set:

φ(r) = −
∫
∂B(x,r)

u(y)dSy = −
∫
∂B(0,1)

u(x+ rz)dSz,

considering the change of variables y = x+ rz. We have:

φ′(r) = −
∫
∂B(0,1)

Du(x+ rz)zdSz = −
∫
∂B(x,r)

Du(y)
y − x
r

dSy

= −
∫
∂B(x,r)

Du(y)νdSy = −
∫
∂B(x,r)

∂u(y)

∂ν
dSy =

r

n
−
∫
B(x,r)

∆u(y)dy

where ν = (y − x)/r is precisely the normal vector to the surface of the sphere, we used
that Du(y)ν = ∂u(y)/∂ν is the definition of the directional derivative and the First
Green Formula [1, Theorem 3 (p. 712)] guarantees the last equality. This is true for all
x ∈ Rn, we now choose x = 0 and note that:

φ(r)− φ(ε) =

∫ r

ε
φ′(t)dt =

∫ r

ε

t

n
−
∫
B(0,t)

∆u(y)dydt =

∫ r

ε

−1

nα(n)tn−1

∫
B(0,t)

f(y)dydt

=
−1

nα(n)(2− n)

[
1

tn−2

∫
B(0,t)

f(y)dy

∣∣∣∣∣
r

ε

−
∫ r

ε

1

tn−2

∂

∂t

(∫
B(0,t)

f(y)dy

)
dt

]

=
1

nα(n)(n− 2)

[
1

rn−2

∫
B(0,r)

f(y)dy − 1

εn−2

∫
B(0,ε)

f(y)dy

−
∫ r

ε

1

tn−2

∫
∂B(0,t)

f(y)dydt

]
.

On the second line we have used the formula of integration by parts [1, Theorem 2 (p.
712)] with uxi = 1/tn−1 so u = 1/(2− n)sn−2 and v =

∫
B(0,t) f(y)dy. On the third line

we have used the differentiation formula for moving regions [1, Theorem 6 (p. 713)],
resulting in:

∂

∂t

(∫
B(0,t)

f(y)dy

)
=

∫
∂B(0,t)

f(y)νdSy

∫
∂B(0,t)

f(y)ν · νdy =

∫
∂B(0,t)

f(y)dy

because the velocity of the moving boundary and the outward pointing unit normal
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coincide in these spheres. Now notice:

1

εn−2

∫
B(0,ε)

f(y)dy ≤ 1

εn−2
Cεn = Cε2

ε→0−→ 0∫ r

ε

1

tn−2

∫
∂B(0,t)

f(y)dydt
ε→0−→

∫ r

0

∫
∂B(0,t)

f(y)

tn−2
dydt =

∫
B(0,r)

f(x)

|x|n−2
dx

φ(ε) = −
∫
∂B(0,ε)

u(y)dSy
ε→0−→ u(0)

φ(r) = −
∫
∂B(0,r)

u(y)dSy = −
∫
∂B(0,r)

g(y)dSy

for C a constant whose existence is guaranteed by the continuity of f , and where we recall
that an integral over a ball may be split into the consecutive integration of the surface of
the sphere and the integration of the radius, and fixing a point x ∈ B(0, r) the parameter
t is precisely d(0, x) = |x|. The third line is justified by u being continuous, then we
can obtain the value in a certain point by averaging the function in a neighborhood and
making it small. Hence when ε goes to 0 we have that:

−
∫
∂B(0,r)

g(y)dSy − u(0) =
1

nα(n)(n− 2)

[
1

rn−2

∫
B(0,r)

f(y)dy −
∫
B(0,r)

f(x)

|x|n−2
dx

]
so:

u(0) = −
∫
∂B(0,r)

g(y)dSy +
1

nα(n)(n− 2)

∫
B(0,r)

[
1

|x|n−2
− 1

rn−2

]
f(x)dx

as desired.
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Exercise 4 (5)[1]

1. Given v : Ω −→ R subharmonic, we proceed exactly as in the Exercise 3 above,
defining:

φ(r) = −
∫
∂B(x,r)

v(y)dSy,

and with the exact same reasoning we obtain:

φ′(r) =
r

n
−
∫
B(x,r)

∆v(y)dy ≥ 0

since everything is positive and v subharmonic guarantees −∆v ≤ 0. This means
that φ(r) is non-decreasing. Thus:

v(x) = lim
t→0
−
∫
∂B(x,t)

v(y)dSy = lim
t→0

φ(t) ≤ φ(r) = −
∫
∂B(x,r)

v(y)dSy

where as before we average a continuous function in a neighborhood and make it
small, and we use that since t is a radius (and φ is non-decreasing), we must have
that the limit of a radius tending to zero must be equal or smaller than the value
of the function in any other radius r > 0. Since this holds for all B(x, r) ⊂ Ω, we
obtain what we wanted.

2. Suppose that there is a point x0 ∈ Ω with v(x0) = M = maxΩ v. Then for every
0 < r < d(x0, ∂Ω) we have by the above that:

v(x) ≤ −
∫
∂B(x,r)

v(y)dSy ≤M,

so all these must be equalities and v(y) = M for y ∈ B(x0, r). This means that the
set {x ∈ Ω : v(x) = M} is open, and since it is a continuous preimage of a closed
set, it is also closed. Hence if Ω is connected we must have Ω = {x ∈ Ω : v(x) = M}
and v is constant in Ω.

Now, in the general case, we have two possibilities. If maxΩ v is attained in ∂Ω,
we are done. If maxΩ v ∈ Ω, by the above v is constant in the connected compo-
nent where the maximum lies, meaning that in the boundary of that connected
component the maximum value is also achieved. This yields maxΩ v = max∂Ω v as
desired. Thus in both cases we have what we wanted.

3. Let ψ : R −→ R be smooth and convex, that is, ψ′′(x) ≥ 0 for every x ∈ R. If u is
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harmonic and v(x) = ψ(u(x)) we compute:

−∆v(x) = −∆ψ(u(x)) = −
n∑
i=1

ψ(u(x))xixi = −
n∑
i=1

(ψ′(u(x))uxi(x))xi

= −
n∑
i=1

[ψ′′(u(x))uxi(x)uxi(x) + ψ′(u(x))uxixi(x)]

= −
n∑
i=1

ψ′′(u(x))uxi(x)2 − ψ′(u(x))
n∑
i=1

uxixi(x) ≤ 0

since ψ′′(u(x))uxi(x)2 is multiplication of two positive terms for every 1 ≤ i ≤ n
and

∑n
i=1 uxixi(x) = ∆u(x) = 0. Thus v is subharmonic.

4. We consider now v(x) = |Du(x)|2, we know that Du(x) = (ux1(x), . . . , uxn(x)) so
|Du(x)|2 =

∑n
i=1 uxi(x)2, meaning that:

∆|Du(x)|2 =
n∑
i=1

∆uxi(x)2

and for every 1 ≤ i ≤ n we have:

∆uxi(x)2 =

n∑
j=1

(uxi(x)2)xjxj =

n∑
j=1

(2uxi(x)uxixj (x))xj =

n∑
j=1

[2uxixj (x)uxixj (x)

+ 2uxi(x)uxixjxj (x)] = 2
n∑
j=1

uxixj (x)2 + 2uxi(x)

 n∑
j=1

uxjxj (x)


xi

≥ 0

since the first remaining term is positive as a sum of squares, and the second term
is 2uxi(x) (∆u(x))xi = 0. This means that ∆v(x) ≥ 0 since it is simply a sum of
positive terms, so −∆v(x) ≤ 0 and v is subharmonic as desired.
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Exercise 5 (10)[1]

1. Consider U+ the open half ball, let u ∈ C2(U+) be harmonic in U+ with u(x) = 0
on ∂U+ ∩ {xn = 0}. We define:

v(x) =

{
u(x) if xn ≥ 0

−u(x1, . . . , xn−1,−xn) if xn < 0

for x ∈ U = B(0, 1). We now proceed to prove that v ∈ C∞(U), which is more
than we are asked, and that v is harmonic in U . For this, we note that v satisfies
the mean value property in U+ because it is harmonic in U+. Fix now x ∈ Rn and
consider B(x, r) ⊂ U \ U+, then:

−
∫
∂B(x,r)

v(y)dSy = −
∫
∂B(x,r)

−u(y1, . . . , yn−1,−yn)dSy

= −−
∫
∂B((x1,...,xn−1,−xn),r)

u(y1, . . . , yn−1, yn)dSy

= −u(x1, . . . , xn−1,−xn) = v(x)

since now ∂B((x1, . . . , xn−1,−xn), δ) ⊂ U+ where the mean value property holds.
Finally, if xn = 0 we have that:

−
∫
∂B(x,r)

v(y)dSy = −
∫
∂B(x,r)∩U+

v(y)dSy +−
∫
∂B(x,r)∩(U\U+)

v(y)dSy

= −
∫
∂B(x,r)∩U+

u(y1, . . . , yn−1, yn)dSy

− −
∫
∂B(x,r)∩(U\U+)

−u(y1, . . . , yn−1,−yn)dSy

= −
∫
∂B(x,r)∩U+

u(y1, . . . , yn−1, yn)dSy

− −
∫
∂B(x,r)∩U+

u(y1, . . . , yn−1, yn)dSy = 0 = v(x)

where we have used the symmetry of having xn = 0, meaning that the integrals are
exactly the same but with opposing sign. We also use that the difference of inte-
grating over ∂B((x1, . . . , xn−1, xn), r) ∩ U+ and over ∂B((x1, . . . , xn−1,−xn), r) ∩
(U \ U+) is {x ∈ U : xn = 0}, a set of measure zero that does not affect the final
value of the integral. This is the result for the average over the surface of balls,
but the result for the integral over the balls follows in the same fashion that one
proves the mean value formulas: we integrate over the radius, we can factor out
the value v(x) using the above and the only part missing is the volume ratio, which
is exactly what we add when we integrate over the radius. Thus we have seen that
for every ball B(x, r) ⊂ U the function v satisfies the mean value property. Thus
by [1, Theorem 6 (p. 28)] we obtain that v ∈ C∞(U), in particular v ∈ C2(U).
Moreover, by [1, Theorem 3 (p. 26)] we have that v is harmonic.
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2. Assume now that u ∈ C2(U+)∩C(U+), we want to show that v is harmonic within
U . First we notice that with only these assumptions the statement is not true,
since the function u(x) = 1 for every x ∈ U+, which is clearly smooth, yields a
function v that is not even continuous, hence it cannot be harmonic. To prove
what we are told we need that u(x) = 0 on ∂U+ ∩ {xn = 0} to guarantee that v is
continuous and hence we are under the hypothesis of Poisson’s formula for a ball
[1, Theorem 15 (p. 41)]. Under these circumstances, we just apply said theorem
to U = B(0, 1), obtaining:

w(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

v(y)

|x− y|n
dSy

which by the Theorem is smooth in U , harmonic in U and for every x0 ∈ ∂B(0, 1)
we have:

v(x0) = lim
x→x0

x∈B(0,1)

w(x) = w(x0)

where the last equality is the definition that we can take of w in the boundary,
which is guaranteed to be well defined since v is finite in the boundary. This means
that we automatically obtain that w(x) = v(x) for every x ∈ ∂U , meaning that
w(x) = v(x) in the whole x ∈ U by the maximum principle. This means that v is
harmonic, as desired.
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Exercise 6 (11)[1]

We consider the Kelvin transform of a function u : Rn −→ R as u(x) = u(x)|x|n−2 =
u(x/|x|)|x|2−n for x 6= 0, where x = x/|x|2. We prove that if u is harmonic then u(x) is
also harmonic.

We start by computing the basic derivatives. For every 1 ≤ i ≤ n we have:

∂

∂

(
1

|x|2

)
=
−2xi
|x4|

so that if we denote ψ(x) = x = (x1, . . . , xn)/(x2
1 + · · ·+ x2

n) so that we can easily work
with their components, then:

∂ψj(x)

∂xi
=

δij
x2

1 + · · ·+ x2
n

+ xj
−2xi
|x|4

=
δij
|x|2

+ xj
−2xi
|x|4

.

This means that:

Dxx = (xx1 , . . . , xxn) =

ψ
1
x1 · · · ψ1

xn
...

...
ψnx1 · · · ψnxn

 = 1n×n
1

|x|2
− 2

|x|4
xxT

since every x is a vector and thus its differential on every component is the one element-
wise, yielding another vector matrix. Here we use that the multiplication xxT = (xixj)ij
yields a matrix. It may seem unclear why we add this here, but this will be used in the
following. We also note that xTx = x2

1 + · · ·+ x2
n = |x|2.

We continue computing derivatives; for every 1 ≤ i, j ≤ n we have:

ψjxixi =
−2xi
|x|4

δij −
2xi
|x|4

δij − 2xj
1

|x|4
− 2xixj

−4xi
|x|6

=
−4xiδij
|x|4

− 2xj
|x|4

+
8x2

ixj
|x|6

with:

∆ψj =
n∑
i=1

ψjxixi =
n∑
i=1
i 6=j

(
−2xj
|x|4

+
8x2

ixj
|x|6

)
− 2xj
|x|4
− 4xj
|x|4

+
8x3

j

|x|6

=
−(n− 1 + 1 + 2)2xj

|x|4
+

8xj
|x|6

n∑
i=1

x2
i = (−2(n+ 2) + 8)

xj
|x|4

= 2(2− n)
xj
|x|4

and thus:

∆ψ = (∆ψi, . . . ,∆ψn) = 2(2− n)x
1

|x|4
.

Equipped with these results, our goal is to compute ∆xu(x), and for this we use that
for two scalar functions f, g : Rn −→ R we have ∆(fg) = f∆(g) + 2∆(f)∆(g) + g∆(f),
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which is a standard formula in vector calculus, yielding:

∆xu(x) = ∆

(
u

(
x

|x|2

)
|x|2−n

)
= ∆x(|x|2−n)u(x)

+ |x|2−n∆x

(
u

(
x

|x|2

))
+ 2Dxu

(
x

|x|2

)
Dx(|x|2−n).

Notice how the first term cancels out since at some point during the application of the
chain rule since a term ∆x(x) = 0 will appear. For the middle term, we notice that if

A : Rn −→ Rn is a vector field, then ∆x(f◦A) = Tr(DAT ·∆f
∣∣
A(x)
·DA)+Df

∣∣T
A(x)
·∆A(x).

In our particular application of this vector identity, we have A = x and f = u harmonic,
so the first summand is zero. Then:

∆xu(x) = |x|2−nDxu ·∆xx+ 2Dxu

(
x

|x|2

)
Dx(|x|2−n),

where we omit the transpose and we just recall the only proper way to multiply them
(this allows us to loosely write the formulas and not have to worry about the non-
commutativity of these multiplications). We will now work with the last term of the
sum and check that it cancels the first. In particular, to compute Dx(|x|2−n) we will
need:

∂|x|2−n

∂xi
= (2− n)|x|2−n−1∂|x|

xi
= (2− n)|x|2−n−1 xi

|x|
= (2− n)|x|−nxi

so:

Dx(|x|2−n) =

(
∂|x|2−n

∂x1
, . . . ,

∂|x|2−n

∂xn

)
= (2− n)|x|−n(x1, . . . , xn).

This means that:

2Dxu

(
x

|x|2

)
Dx(|x|2−n) = 2Dxu ·Dxx ·Dx(|x|2−n)

= 2Dxu

(
1n×n

1

|x|2
− 2

|x|4
xxT

)
(2− n)|x|−nx

= 2(2− n)|x|−n−2Dxu ·
(

1n×n −
2xxT

|x|2

)
x

= −2(2− n)|x|−2−nDxu · x = −|x|2−nDxu ·∆xx.

Hence:

∆xu(x) = −|x|2−nDxu ·∆xx+ |x|2−nDxu ·∆xx = 0

and u is harmonic.

11



Exercise 7

1. We prove that any exponential function on R is an eigenfunction of all shifts. For
this, let f(x) = eax for a, x ∈ R. We have that for all t ∈ R:

f(x+ t) = ea(x+t) = eaxeat = λtf(x)

if we rename λt = eat. This proves what we wanted.

2. We prove that if f : R −→ R continuous is an eigenfunction of all shifts, then we
must have f(x) = Ceax for some constants C, a ∈ R. For this, notice that if we
have f(x + t) = λtf(x), the assignment g(t) = λt defines a function g : R −→
R. Moreover, if f(x0) = 0 for certain x0 ∈ R, then f(x) = f(x − x0 + x0) =
λx−x0f(x0) = 0 so the function is identically zero (that is, C = 0). Hence without
loss of generality we may assume that the function f has constant sign and is never
zero. Since f(x + t) = g(t)f(x), this means that the function g must be positive
to preserve the same sign on both sides of the equality and it is continuous as a
fraction of continuous functions. We also have that for all t, s ∈ R:

g(t+ s)f(x) = λt+sf(x) = f(x+ t+ s) = λsf(x+ t)

= λsλtf(x) = g(t)g(s)f(x)

so g(t + s) = g(t)g(s). We now prove that in fact g(t) = g(1)t for all t ∈ R. We
start with n ∈ N, we have:

g(n) = g(1+
n· · · +1) = g(1)

n· · · g(1) = g(1)n,

g(−n) = g(−1− n· · · −1) = g(−1)
n· · · g(−1) = g(−1)n = g(1)−n,

where we have used that g(0) = λ0 = 1 since f(x) = λ0f(x), implying that
g(1)g(−1) = g(1− 1) = g(0) = 1 and thus g(−1) = g(1)−1. Now, for n/m ∈ Q we
have:

g

(
1

m

)m
= g

(
m

1

m

)
= g(1) so g

(
1

m

)
= g(1)

1
m ,

g
( n
m

)
= g

(
n

1

m

)
= g

(
1

m

)n
=
(
g(1)

1
m

)n
= g(1)

n
m ,

where we heavily used that g is non-negative. Finally, if t ∈ R, there is a sequence
{tn}n∈N ⊂ Q such that limn→∞ tn = t, meaning that:

g(t) = g
(

lim
n→∞

tn

)
= lim

n→∞
g(tn) = lim

n→∞
g(1)tn = g(1)limn→∞ tn = g(1)t

where we used that g and exponentiation are both continuous, so they commute
with the limits. Now we have that for every x, t ∈ R:

f(x+ t) = g(t)f(x) = g(1)tf(x) so f(t) = f(0)g(1)t = f(0)et log(g(1))

by choosing x = 0. This clearly has the exponential form desired, with C = f(0)
and a = log(g(1)).
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