
Introduction to ODEs and PDEs - Homework 3

Pablo Sánchez Ocal

November 2nd, 2017



Exercise 1 (12)[1]

Let u : Rn × 0,∞) −→ R a smooth function with ut −∆u = 0.

1. The function uλ(x, t) = u(λx, λ2t) satisfies (uλ)t −∆(uλ) = 0 for every λ ∈ R.

This is seen by considering the change of variables y = λx, s = λ2t and computing:

∂uλ(x, t)

∂t
=

∂u(λx, λ2t)

∂t
=
∂u(y, s)

∂t
=
∂u(y, s)

∂s

∂s

∂t
=
∂u(y, s)

∂s
λ2

∂uλ(x, t)

∂xi
=

∂u(λx, λ2t)

∂xi
=
∂u(y, s)

∂xi
=

n∑
j=1

∂u(y, s)

∂yj

∂yj
∂xi

=
∂u(y, s)

∂yi
λ

∂

∂xi

(
∂uλ(x, t)

∂xi

)
=

∂

∂xi

(
∂u(λx, λ2t)

∂xi

)
= λ

n∑
j=1

∂

∂yj

(
∂u(y, s)

∂yi

)
∂yj
∂xi

= λ
∂2u(y, s)

∂yi∂yi
λ

where we have used the standard change of variables formula, noticing that the
variables are independent with respect to each other. Moreover ∂u(y, s)/∂yi =
∂u(x, t)/∂xi and ∂u(y, s)/∂s = ∂u(x, t)/∂t since this differentiation only indicates
that we are differentiating with respect to the second variable and the exact name
of it is irrelevant. Thus:

(uλ)t −∆(uλ) =
∂uλ(x, t)

∂t
−

n∑
i=1

∂

∂xi

(
∂uλ(x, t)

∂xi

)

= λ2∂u(y, s)

∂s
−

n∑
i=1

λ2∂
2u(y, s)

∂yi∂yi
= λ2 (ut −∆u) = 0

since ut −∆u = 0 by hypothesis. This is the desired result.

2. Use the section above to show that v(x, t) = x · Du(x, y) + 2tut(x, t) satisfies
vt −∆v = 0.

One can directly check that v(x, t) satisfies vt−∆v = 0. However, we are asked to
use the section above. Notice that:

w(x, t, λ) =
∂uλ(x, t)

∂λ
=
∂u(λx, λ2t)

∂λ
=
∂u(y, s)

∂t

=
∂u(y, s)

∂s

∂s

∂λ
+

n∑
i=1

∂u(y, s)

∂yi

∂yi
∂λ

= 2λt
∂u(y, s)

∂s
+

n∑
i=1

xi
∂u(y, s)

∂yi

= 2λtut(x, t) + x ·Du(x, t)

using what we noticed above that differentiation with respect to the first or sec-
ond variables is independent of the exact name of those variables. Now clearly
w(x, t, λ) : Rn × (0,∞) × R −→ R is smooth as composition of smooth functions,
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since u is smooth and so is multiplication by λ. Moreover w(x, t, 1) = v(x, t), which
will come into play later. Now, since we know:

∂uλ(x, t)

∂t
−∆uλ(x, t) = 0

we can apply ∂/∂λ, and the smoothness dependence guarantees that we can per-
mute the differential operators, meaning that:

0 =
∂

∂λ

(
∂uλ(x, t)

∂t
−∆uλ(x, t)

)
=

∂

∂λ

(
∂uλ(x, t)

∂t

)
− ∂

∂λ
(∆uλ(x, t))

=
∂

∂t

(
∂uλ(x, t)

∂λ

)
−∆

(
∂uλ(x, t)

∂λ

)
= wt(x, t, λ)−∆w(x, t, λ)

which holds for every λ ∈ R. In particular for λ = 1 we obtain:

0 = wt(x, t, 1)−∆w(x, t, 1) = v(x, t)−∆v(x, t)

since, as noted above, w(x, t, 1) = v(x, t), and this is what we wanted.
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Exercise 2 (13)[1]

We assume n = 1 and u(x, t) = v(x/
√
t). Even if most if not all of the following is true

for t ∈ R, since we are in the context of the heat equation, we will consider t ∈ (0,∞).

1. We show that ut = uxx if and only if v′′ + (z/2)v′ = 0, and then find the general
solution of the latter.

The first part is straightforward, since naming z = x/
√
t we have:

∂z

∂x
=

1√
t

∂z

∂t
=

−x
2t3/2

ut =
∂v(z)

∂t
= v′

∂z

∂t
= v′

−x
2t3/2

= v′
x√
t

1

2

−1

t
= v′

z

2

−1

t

ux =
∂v(z)

∂x
= v′

∂x

∂t
= v′

1√
t

uxx =
1√
t

∂v′(z)

∂x
=

1√
t
v′′
∂x

∂t
=

1√
t
v′′

1√
t

and thus:

ut = uxx ⇐⇒ v′
z

2

−1

t
= v′′

1

t
⇐⇒ 1

t
v′′ +

1

t

z

2
v′ = 0 ⇐⇒ 1

t

(
v′′ +

z

2
v′
)

= 0

⇐⇒ v′′ +
z

2
v′ = 0

since 1/t 6= 0 for every t ∈ (0,∞). Every implication is an if and only if, proving
what we desired.

To compute the solution of v′′ + (z/2)v′ = 0, we first notice that if v(z) has the
form that we are told, then:

v′ = ce−z
2/4 so ez

2/4v′ = c

which means that ez
2/4v′(z) is constant as a function, so (ez

2/4v′)′ = 0. If this
ordinary differential equation is equivalent to our original ordinary differential
equation (that is, they have exactly the same solutions), this would reduce the
degree of our original ordinary differential equation, making it easier to solve.
Hence this motivates us to ask if this is true. Assume v is a solution of v′′+(z/2)v′ =
0, then:

(ez
2/4v′)′ =

2z

4
ez

2/4v′ + ez
2/4v′′ = ez

2/4
(
v′′ +

z

2
v′
)

= 0

since by hypothesis v′′ + (z/2)v′ = 0. Assume now v satisfies (ez
2/4v′)′ = 0, then:

0 = (ez
2/4v′)′ =

2z

4
ez

2/4v′ + ez
2/4v′′ = ez

2/4
(
v′′ +

z

2
v′
)
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which implies v′′ + (z/2)v′ = 0 since ez
2/4 > 0 for every z ∈ R. This shows that

a function v satisfies v′′ + (z/2)v′ = 0 if and only if it satisfies (ez
2/4v′)′ = 0. To

compute the solutions of the latter, we can use separation of variables twice:

(ez
2/4v′)′ = 0 =⇒ ez

2/4v′ = c

for some constant c ∈ R, and now:

ez
2/4v′ = c =⇒ v′ = ce−z

2/4 =⇒ v = c

∫ z

0
e−s

2/4ds+ d

for some constant c ∈ R. This is exactly the form that we wanted. To justify
that this gives us a general expression, we can argue in two ways: the first is that
we simply applied separation of variables, which indeed gives the general solution
of an ordinary differential equation, and the second is that our solution has two
parameters which are independent, that is, two degrees of freedom. Since our
original equation is a second order differential equation, to determine a particular
solution we need to determine two conditions, hence the degrees of freedom coincide
and our solution is indeed the general form.

2. We compute ux and select c accordingly to obtain the fundamental solution for
the heat equation in dimension 1.

Simply computing:

∂u(x, t)

∂x
=
∂v(z)

∂x
=
∂v(z)

∂z

∂z

∂x
= ce−z

2/4 1√
t

=
c√
t
e−x

2/4t.

Notice that since v is smooth by integration of a smooth function, then u is smooth,
meaning that the differential operators commute and ux is also a solution of the
heat equation: since v solves v′′ + (z/2)v′ = 0 then ut − uxx = 0, so:

0 =
∂

∂x
(ut − uxx) = utx − uxxx =

∂ux
∂t
− ∂2ux
∂x∂x

and ux is a solution of the heat equation in dimension 1. This will come into play
later. Going back to computing c, we notice that we want the fundamental solution
to integrate to 1, thus imposing for every fixed t ∈ (0,∞):

1 =

∫
R
ux(s)ds =

∫
R

c√
t
e−x

2/4tdx = c

∫
R
e−z

2/4dz = c
√

4π

where we used the change of variables z = x/
√
t (which does not change the

integration limits) yielding dz = dx/
√
t and used that

∫
R e
−ax2 =

√
π/
√
a, which

is a standard fact. This means that c = 1/
√

4π, and then indeed:

∂u(x, t)

∂x
=

1√
4πt

e−x
2/4t
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is the fundamental solution to the heat equation in dimension 1.

The reason why this procedure gives the fundamental solution is because the way
we computed this fundamental solution is assuming a function w solved the heat
equation and was of the form 1

tαω
(
x
tβ

)
for some function ω to be found, but sat-

isfying some very concrete properties. Now, ux = 1
t1/2

v′
(

x
t1/2

)
is the solution

that we proposed, which has choices α = 1/2 = β, precisely the choices made
when computing the fundamental solution for n = 1, and v′ = ce−z

2/4, which
is also the condition that we imposed over ω when computing the fundamental
solution. Hence our method is simply doing exactly the same thing that we did
when computing the fundamental solution, except that we already have the opti-
mal conditions instead of having to find them. Since we are doing exactly the same
thing, we obtain exactly the same solution, which is, by definition, the fundamental
solution.
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Exercise 3 (14)[1]

Given c ∈ R, we want to find an explicit formula for a solution of:{
ut −∆u+ cu = f in Rn × (0,∞)

u = g in Rn × {t = 0}.

For this, suppose we found one, say u : Rn×(0,∞) −→ R. Define now v(x, t) = ectu(x, t)
for c ∈ R the same one given by the original equation. Notice that v is a solution of:{

vt −∆v = ectf in Rn × (0,∞)

v = g in Rn × {t = 0}.

since:

∂v(x, t)

∂t
−∆v(x, t) = ectcu(x, t) + ectut(x, t)− ect∆u = ect(ut −∆u+ cu) = ectf,

v(x, 0) = e0u(x, 0) = u(x, 0) = g.

Now by [1, Solution of non-homogeneous problem with general initial data (p. 51)], we
have that:

v(x, t) =

∫
Rn
φ(x− y, t)g(y)dy +

∫ t

0

∫
Rn
φ(x− y, t− s)ecsf(y, s)dyds

where φ is the fundamental solution of the heat equation. This then gives us an explicit
formula for u, which is what we want.

This motivates going in the reverse direction. We know that

v(x, t) =

∫
Rn
φ(x− y, t)g(y)dy +

∫ t

0

∫
Rn
φ(x− y, t− s)ecsf(y, s)dyds

where φ is the fundamental solution of the heat equation, solves:{
vt −∆v = ectf in Rn × (0,∞)

v = g in Rn × {t = 0}.

by [1, Solution of non-homogeneous problem with general initial data (p. 51)]. Hence
define u(x, t) = e−ctv(x, t), we have that:

∂u(x, t)

∂t
−∆u(x, t) = −e−ctcv(x, t) + e−ctvt(x, t)− e−ct∆v

= −e−ctcv(x, t) + e−ct(vt(x, t)−∆v) = e−ctectf − cu(x, t)

= f − cu(x, t)

u(x, 0) = e0v(x, 0) = v(x, 0) = g
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and thus u(x, t) is a solution of:{
ut −∆u+ cu = f in Rn × (0,∞)

u = g in Rn × {t = 0}.

with explicit formula:

u(x, t) = e−ct
∫
Rn
φ(x− y, t)g(y)dy + e−ct

∫ t

0

∫
Rn
φ(x− y, t− s)ecsf(y, s)dyds

as desired.
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Exercise 4 (16)[1]

We prove that if Ω is bounded and u ∈ C2
1(ΩT ) ∩ C(ΩT ) solves the heat equation, then

maxΩT
(u) = maxΓT (u), by using the hint provided: we consider uε = u − εt for ε > 0,

and we prove the above for uε.
First, consider v ∈ C2

1(ΩT )∩C(ΩT ) satisfying ∆v−vt > 0. Then since ΩT is compact
and v continuous, there is a point (x0, t0) ∈ ΩT where v attains its maximum. If
(x0, t0) ∈ ΩT , then by hypothesis we can differentiate v, so the criterion that (x0, t0) is
a maximum if and only if the partial derivatives are zero applies, meaning that we have
vt = 0 and vxi = 0 for every 1 ≤ i ≤ n, so we have ∆v = 0. Then:

0 = ∆v − vt > 0,

a contradiction. Hence (x0, t0) ∈ ΩT \ ΩT = ΓT , meaning that maxΩT
(v) = maxΓT (v).

Now for uε we have:

∆uε −
∂uε
∂t

= ∆u− (ut − ε) = ε > 0

so the above reasoning applies, and we have maxΩT
(uε) = maxΓT (uε) for every ε > 0.

Now consider the sequence {u1/n}n∈N, we have that:

|u1/n − u| =
∣∣∣∣− tn

∣∣∣∣ ≤ T

n

so given any δ > 0, by choosing N = d(T/δ) + 1e we have that for every (x, t) ∈ ΩT and
all n ≥ N then |u1/n − u| ≤ T/n ≤ T/N < δ. This means that {u1/n}n∈N converges

uniformly to u in ΩT , and in particular we can permute the limit and the supremum
(which in this case, since ΩT is compact, is a maximum), obtaining:

max
ΩT

(u) = max
ΩT

lim
n→∞

u1/n = lim
n→∞

max
ΩT

u1/n

= lim
n→∞

max
ΓT

u1/n = max
ΓT

lim
n→∞

u1/n = max
ΓT

(u)

the desired result.
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