Introduction to ODEs and PDEs - Homework 4

Pablo Sánchez Ocal

December 5th, 2017

Exercise 1

Let $g: \mathbb{R} \longrightarrow \mathbb{C}$ a compactly supported continuous function with Fourier transform $\tilde{g}(\xi)$. Find the Fourier transform of $e^{i a x} g(x)$ where $a \in \mathbb{R}$ is a constant.

In this exercise and the following we will denote as \mathcal{F} the Fourier transform operation, and given a function $g(x)$ we will denote $\mathcal{F}\{g(x)\}(\xi)$ its Fourier transform. This will prove more useful and illuminating than a tilde ${ }^{\sim}$ when dealing with Fourier transforms of translations and changes of variables of the original function. Hence in this notation, we are given $g(x)$, we know $\mathcal{F}\{g(x)\}(\xi)$ and we want to find $\mathcal{F}\left\{e^{i a x} g(x)\right\}(\xi)$. By definition:
$\mathcal{F}\left\{e^{i a x} g(x)\right\}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x \xi} e^{i a x} g(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x(\xi-a)} g(x) d x=\mathcal{F}\{g(x)\}(\xi-a)$
which by hypothesis is now in terms that we know.

Exercise 2

Let $g: \mathbb{R} \longrightarrow \mathbb{C}$ a compactly supported continuous function. Find the Fourier transform of $g(x+b)$ where $b \in \mathbb{R}$ is a constant. In the notation above, we compute:

$$
\begin{aligned}
\mathcal{F}\{g(x+b)\}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x \xi} g(x+b) d x=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x \xi} e^{i b \xi} e^{-i b \xi} g(x+b) d x \\
& =\frac{e^{i b \xi}}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i(x+b) \xi} g(x+b) d x=\frac{e^{i b \xi}}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i y \xi} g(y) d y \\
& =e^{i b \xi} \mathcal{F}\{g(y)\}(\xi)=e^{i b \xi} \mathcal{F}\{g(x)\}(\xi)
\end{aligned}
$$

where we have used the change of variables $y=x+b$ so $d y=d x$, and that in the last equation the name of the variable is silent and does not carry any meaning.

Exercise 3

We derive by Fourier transform the d'Alembert formula for the solution of the initial value problem given by $u_{t t}-u_{x x}=0,\left.u\right|_{t=0}=g(x),\left.u_{t}\right|_{t=0}=0$. We know that the d'Alembert formula for $u_{t t}-u_{x x}=0,\left.u\right|_{t=0}=g(x),\left.u_{t}\right|_{t=0}=h(x)$ is $u(x, t)=(1 / 2)[g(x+$ $\left.t)+g(x-t)+\int_{x-t}^{x+t} h(y) d y\right]$. Because there are no shifts involved here, we will use the tilde notation.

Consider the given initial value problem, taking its Fourier transform on the variable x we obtain the initial value problem:

$$
\left\{\begin{array}{l}
\tilde{u}_{t t}+\xi^{2} \tilde{u}_{x x}=\tilde{u}_{t t}-(i \xi)^{2} \tilde{u}_{x x}=0 \\
\left.\tilde{u}\right|_{t=0}=\tilde{g} \\
\tilde{u}_{t \mid t=0}=0
\end{array}\right.
$$

which is a system that we have seen multiple times and has for general solution $\tilde{u}=$ $\tilde{g} \cos (t \xi)=(\tilde{g} / 2)\left[e^{i t \xi}+e^{-i t \xi}\right]$.

Taking the inverse Fourier transform, we obtain:

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x \xi \frac{\tilde{g}(\xi)}{2}\left[e^{i t \xi}+e^{-i t \xi}\right] d \xi} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \frac{1}{2}\left[e^{-i(x-t) \xi} \tilde{g}(\xi)+e^{-i(x+t) \xi} \tilde{g}(\xi)\right] d \xi \\
& =\frac{1}{2}\left[\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i(x-t) \xi} \tilde{g}(\xi) d \xi+\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i(x+t) \xi} \tilde{g}(\xi) d \xi\right] \\
& =\frac{1}{2}[\tilde{\tilde{g}}(x-t)+\tilde{\tilde{g}}(x+t)]=\frac{1}{2}[g(x+t)+g(x-t)]
\end{aligned}
$$

which is exactly the d'Alembert formula with h being the zero function.

Exercise 4

We derive Duhamel's principle for the intermediate value problem for the system of ordinary differential equations $u_{t t}=A u+f, u(0)=0, u_{t}(0)=0$, where $u: \mathbb{R} \longrightarrow \mathbb{C}^{n}$ and $A \in M_{n}(\mathbb{C})$ a fixed matrix.

What Duhamel's principle claims is that if $v(t ; s)$ is a solution of the system of ordinary differential equations $v_{t} t=A v,\left.v\right|_{t=s}=0,\left.v_{t}\right|_{t=s}=f(s)$ for a fixed $s \in \mathbb{R}$, then defining $u(t)=\int_{0}^{t} v(t ; s) d s$, this is a solution of the original system. We prove that this is indeed a solution:

$$
\begin{aligned}
u(0) & =\int_{0}^{0} v(t ; s) d s=0 \\
u_{t} & =v(t ; t)+\int_{0}^{t} v_{t}(t ; s) d s=\int_{0}^{t} v_{t}(t ; s) d s \\
u_{t}(0) & =\int_{0}^{0} v_{t}(t ; s) d s=0 \\
u_{t t} & =v_{t}(t ; t)+\int_{0}^{t} v_{t t}(t ; s) d s=f+\int_{0}^{t} A v(t ; s) d s=f+A \int_{0}^{t} v(t ; s) d s=f+A u
\end{aligned}
$$

where we simply applied the chain rule and the Fundamental Theorem of Calculus, and then used the hypothesis over v. Hence indeed u as defined is a solution of the original system, proving Duhamel's principle in this particular case.

Exercise 5

We are asked if there is a solution of $u_{x}+u_{y}=u$ whose graph contains the line $x=t$, $y=t, u=1$, that we shall call L.

Assume we have a solution u, and that its graph indeed contains L parametrized by t as above. Looking at u along that line, we find that it is constant since $u(t, t)=1$, and if we apply the differentiation rules:

$$
0=\left.\frac{d u}{d t}\right|_{L}=\left.\left.\frac{\partial x}{\partial t}\right|_{L} \frac{\partial u}{\partial x}\right|_{L}+\left.\left.\frac{\partial y}{\partial t}\right|_{L} \frac{\partial u}{\partial y}\right|_{L}=\left.u_{x}\right|_{L}+\left.u_{y}\right|_{L}=\left.u\right|_{L}=1
$$

which is a contradiction. Hence, no such solution can exist.

References

[1] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.

