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Exercise 1

Let g : R — C a compactly supported continuous function with Fourier transform g(&).
Find the Fourier transform of €“*g(x) where a € R is a constant.

In this exercise and the following we will denote as F the Fourier transform operation,
and given a function g(x) we will denote F{g(z)}(§) its Fourier transform. This will
prove more useful and illuminating than a tilde ~ when dealing with Fourier transforms of
translations and changes of variables of the original function. Hence in this notation, we
are given g(x), we know F{g(z)}(£) and we want to find F{e*®g(x)}(¢). By definition:
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which by hypothesis is now in terms that we know.



Exercise 2

Let g : R — C a compactly supported continuous function. Find the Fourier transform
of g(z + b) where b € R is a constant. In the notation above, we compute:
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= e F{g(y)}(€) = e F{g(x)}(€)

where we have used the change of variables y = x + b so dy = dx, and that in the last
equation the name of the variable is silent and does not carry any meaning.
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Exercise 3

We derive by Fourier transform the d’Alembert formula for the solution of the initial
value problem given by wuy — uzy = 0, uli—o = g(x), utlt=o = 0. We know that the
d’Alembert formula for uy —ug, = 0, uli=0 = g(x), ut|i=0 = h(x) is u(z,t) = (1/2)[g(x+
t)+gle—t)+ [, o, (y)dy]. Because there are no shifts involved here, we will use the
tilde notation.
Consider the given initial value problem, taking its Fourier transform on the variable
x we obtain the initial value problem:
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which is a system that we have seen multiple times and has for general solution @ =
geos(t€) = (§/2)[e" + 7",
Taking the inverse Fourier transform, we obtain:
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which is exactly the d’Alembert formula with A being the zero function.



Exercise 4

We derive Duhamel’s principle for the intermediate value problem for the system of
ordinary differential equations uy; = Au+ f, u(0) = 0, u(0) = 0, where u : R — C”
and A € M, (C) a fixed matrix.

What Duhamel’s principle claims is that if v(¢;s) is a solution of the system of
ordinary differential equations vt = Av, v|i=s = 0, v¢|t=s = f(s) for a fixed s € R, then
defining u(t) = fot v(t; s)ds, this is a solution of the original system. We prove that this
is indeed a solution:
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u(0) = / v(t;s)ds =0
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ug = v(t;t) + /Ot v (t;s)ds = f + /Ot Av(t;s)ds = f + A/Otv(t; s)ds = f + Au

where we simply applied the chain rule and the Fundamental Theorem of Calculus, and
then used the hypothesis over v. Hence indeed u as defined is a solution of the original
system, proving Duhamel’s principle in this particular case.



Exercise 5

We are asked if there is a solution of u, + u, = u whose graph contains the line x = ¢,
y =t, u =1, that we shall call L.

Assume we have a solution u, and that its graph indeed contains L parametrized by
t as above. Looking at u along that line, we find that it is constant since u(t,t) = 1, and
if we apply the differentiation rules:
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which is a contradiction. Hence, no such solution can exist.
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