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Exercise 1

Let g : R −→ C a compactly supported continuous function with Fourier transform g̃(ξ).
Find the Fourier transform of eiaxg(x) where a ∈ R is a constant.

In this exercise and the following we will denote as F the Fourier transform operation,
and given a function g(x) we will denote F{g(x)}(ξ) its Fourier transform. This will
prove more useful and illuminating than a tilde ˜ when dealing with Fourier transforms of
translations and changes of variables of the original function. Hence in this notation, we
are given g(x), we know F{g(x)}(ξ) and we want to find F{eiaxg(x)}(ξ). By definition:

F{eiaxg(x)}(ξ) =
1√
2π

∫
R
e−ixξeiaxg(x)dx =

1√
2π

∫
R
e−ix(ξ−a)g(x)dx = F{g(x)}(ξ − a)

which by hypothesis is now in terms that we know.
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Exercise 2

Let g : R −→ C a compactly supported continuous function. Find the Fourier transform
of g(x+ b) where b ∈ R is a constant. In the notation above, we compute:

F{g(x+ b)}(ξ) =
1√
2π

∫
R
e−ixξg(x+ b)dx =

1√
2π

∫
R
e−ixξeibξe−ibξg(x+ b)dx

=
eibξ√

2π

∫
R
e−i(x+b)ξg(x+ b)dx =

eibξ√
2π

∫
R
e−iyξg(y)dy

= eibξF{g(y)}(ξ) = eibξF{g(x)}(ξ)

where we have used the change of variables y = x + b so dy = dx, and that in the last
equation the name of the variable is silent and does not carry any meaning.
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Exercise 3

We derive by Fourier transform the d’Alembert formula for the solution of the initial
value problem given by utt − uxx = 0, u|t=0 = g(x), ut|t=0 = 0. We know that the
d’Alembert formula for utt−uxx = 0, u|t=0 = g(x), ut|t=0 = h(x) is u(x, t) = (1/2)[g(x+
t) + g(x − t) +

∫ x+t
x−t h(y)dy]. Because there are no shifts involved here, we will use the

tilde notation.
Consider the given initial value problem, taking its Fourier transform on the variable

x we obtain the initial value problem:
ũtt + ξ2ũxx = ũtt − (iξ)2ũxx = 0

ũ|t=0 = g̃

ũt|t=0 = 0

which is a system that we have seen multiple times and has for general solution ũ =
g̃ cos(tξ) = (g̃/2)[eitξ + e−itξ].

Taking the inverse Fourier transform, we obtain:

u(x, t) =
1√
2π

∫
R
e−ixξ

g̃(ξ)

2
[eitξ + e−itξ]dξ

=
1√
2π

∫
R

1

2
[e−i(x−t)ξ g̃(ξ) + e−i(x+t)ξ g̃(ξ)]dξ

=
1

2

[
1√
2π

∫
R
e−i(x−t)ξ g̃(ξ)dξ +

1√
2π

∫
R
e−i(x+t)ξ g̃(ξ)dξ

]
=

1

2
[˜̃g(x− t) + ˜̃g(x+ t)] =

1

2
[g(x+ t) + g(x− t)]

which is exactly the d’Alembert formula with h being the zero function.
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Exercise 4

We derive Duhamel’s principle for the intermediate value problem for the system of
ordinary differential equations utt = Au + f , u(0) = 0, ut(0) = 0, where u : R −→ Cn
and A ∈Mn(C) a fixed matrix.

What Duhamel’s principle claims is that if v(t; s) is a solution of the system of
ordinary differential equations vtt = Av, v|t=s = 0, vt|t=s = f(s) for a fixed s ∈ R, then
defining u(t) =

∫ t
0 v(t; s)ds, this is a solution of the original system. We prove that this

is indeed a solution:

u(0) =

∫ 0

0
v(t; s)ds = 0

ut = v(t; t) +

∫ t

0
vt(t; s)ds =

∫ t

0
vt(t; s)ds

ut(0) =

∫ 0

0
vt(t; s)ds = 0

utt = vt(t; t) +

∫ t

0
vtt(t; s)ds = f +

∫ t

0
Av(t; s)ds = f +A

∫ t

0
v(t; s)ds = f +Au

where we simply applied the chain rule and the Fundamental Theorem of Calculus, and
then used the hypothesis over v. Hence indeed u as defined is a solution of the original
system, proving Duhamel’s principle in this particular case.
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Exercise 5

We are asked if there is a solution of ux + uy = u whose graph contains the line x = t,
y = t, u = 1, that we shall call L.

Assume we have a solution u, and that its graph indeed contains L parametrized by
t as above. Looking at u along that line, we find that it is constant since u(t, t) = 1, and
if we apply the differentiation rules:

0 =
du

dt
|L =

∂x

∂t
|L
∂u

∂x
|L +

∂y

∂t
|L
∂u

∂y
|L = ux|L + uy|L = u|L = 1

which is a contradiction. Hence, no such solution can exist.
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