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Exercise 1

We want to prove that every topological space X that is path connected is also connected.
We proceed by contradiction: suppose we can write X = A ∪ B with A, B open,

non empty, A ∩ B = ∅. Then take x ∈ A, y ∈ B and since X is path connected,
there exists a continuous γ : [0, 1] −→ X with γ(0) = x, γ(1) = y; in particular
A ∩ γ([0, 1]) 6= ∅ and B ∩ γ([0, 1]) 6= ∅. Since [0, 1] is connected and γ is continuous,
γ([0, 1]) is also connected, meaning that either γ([0, 1]) ⊂ A or γ([0, 1]) ⊂ B (entirely
contained), rewritten; B ∩ γ([0, 1]) = ∅ or A ∩ γ([0, 1]) = ∅, a contradiction.
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Exercise 2

We want to prove that a topological space X is compact if and only if every centered
system of closed sets has non empty intersection.
⇒) We have X compact, take a centered system of closed sets {Ti}i∈I . We proceed

by contradiction: suppose
⋂

i∈I Ti = ∅, then X = (
⋂

i∈I Ti)
C =

⋃
i∈I T

C
i . Since TC

i is
open for every i ∈ I, we obtain an open cover of X, thus by compactness, there is N ⊂ I
a finite subset with X =

⋃
i∈N TC

i = (
⋂

i∈I Ti)
C , in particular ∅ =

⋂
i∈N Ti. This is a

contradiction since {Ti}i∈I was a centered system of closed sets.
⇐) We have that in X every centered system of closed sets has non empty inter-

section. Take {Ui}i∈I an open cover: X =
⋃

i∈I Ui, in particular it defines {UC
i }i∈I a

system of closed sets with ∅ = (
⋃

i∈I Ui)
C =

⋂
i∈I U

C
i . We proceed by contradiction:

suppose X is not compact, if we prove that {UC
i }i∈I is a centered system, this imme-

diately contradicts the original hypothesis. If X is not compact, then X 6=
⋃

i∈N Ui

for every finite subset N ⊂ I, meaning that ∅ 6= (
⋃

i∈N Ui)
C =

⋂
i∈N UC

i , which shows
that {UC

i }i∈I has the finite intersections non empty and thus it is a centered system, as
desired.
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Exercise 3

We want to prove that whenever we have K ⊂ X a compact subset of a Hausdorff space,
then it is closed.

We prove that KC is open. Let x ∈ KC , for every y ∈ K consider Uy 3 x and Vy 3 y,
whose existence is guaranteed by X being Hausdorff. Clearly {Vy}y∈K is an open cover
of K, this being compact means that there exists N ⊂ K such that {Vy}y∈N is an open
cover. Now x ∈

⋂
x∈N Ux which is open (since it is a finite intersection) and it does not

intersect K since none of its components does, meaning that KC is open.
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Exercise 4

We want to prove that in a metric space (X, d) every convergent sequence is Cauchy.
A sequence {Sn}n∈N converges to S when for every ε > 0 there is an N ∈ N such

that d(Sn, S) ≤ ε for n > N . A sequence {Sn}n∈N is Cauchy when for every ε > 0 there
is an N ∈ N such that d(Sn, Sm) > ε for n,m > N .

Consider {Sn}n∈N a convergent sequence, then for ε > 0 take N ∈ N such that
d(Sn, S) ≤ ε/2. Then d(Sn, Sm) ≤ d(Sn, S) + d(S, Sm) < ε/2 + ε/2 = ε for n,m > N
and {Sn}n∈N is Cauchy.
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Exercise 5

We consider for (z1, z2, z3, z4) distinct complex numbers, the cross ratio:

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

.

Given any Möbius transformation, we want to prove that [T (z1), T (z2), T (z3), T (z4)] =
[z1, z2, z3, z4]. Since any such T can be constructed via translations b ∈ R, inversions
and a scaling c ∈ R, it is enough to prove that the cross ratio remains invariant by them:

1. [Tb(z1), Tb(z2), Tb(z3), Tb(z4)] = (z1+b−z3−b)(z2+b−z4−b)
(z2+b−z3−b)(z1+b−z4−b) = [z1, z2, z3, z4],

2. [I(z1), I(z2), I(z3), I(z4)] =

(
1
z1
− 1

z3

)(
1
z2
− 1

z4

)
(

1
z2
− 1

z3

)(
1
z1
− 1

z4

) =
z3−z1
z1z3

z4−z2
z2z4

z3−z2
z2z3

z4−z1
z1z4

= [z1, z2, z3, z4],

3. [Sc(z1), Sc(z2), Sc(z3), Sc(z4)] = (cz1−cz3)(cz2−cz4)
(cz2−cz3)(cz1−cz4) = c(z1−z3)(z2−z4)

c(z2−z3)(z1−z4) = [z1, z2, z3, z4].

The first and third points being obvious, and the second not much more complicated:
we just have to note that all the denominators in the small fractions cancel each other,
and the remaining is a scaling by c = −1, which is invariant since we proved it in the
third point (alternatively, one may prefer to simply factor out −1 and cancel it out).
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Exercise 6

We want to prove that if (z1, z2, z3, z4) distinct belong to a circle, then [z1, z2, z3, z4] ∈ R.
For this, we will use T the Möbius transformation that takes:

T (z2) −→ 1
T (z3) −→ 0
T (z4) −→ ∞

that we know exists since we can send any three points to any other three points. It can
be readily checked that this transformation is:

T (z) =
(z − z3)(z2 − z4)
(z2 − z3)(z − z4)

.

We know that a Möbius transformation (thus T in particular) takes clines to clines,
and since we take (z2, z3, z4) to (1, 0,∞), the last three points being aligned along
the real line, we must have that T (z1) belongs to the real line. We have the equality
[T (z1), T (z2), T (z3), T (z4)] = [z1, z2, z3, z4] proven above, the fact that the four original
points are distinct guarantee that this is a finite value and the fact that after the trans-
formation we belong in the real line guarantee that this value is a real one: a relation
between real values is a real value.
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Exercise 7

We have the Möbius transformation c(z) = (z − i)/(z + i), we want to see that:

1. Takes i to 0: z(i) = (i− i)/(i+ i) = 0.

2. The real axis to the unit circle, that is, for every r ∈ R we have c(r) ∈ S1:
|c(r)| = |(r− i)/(r+ i)| = |r− i|/|r+ i| = |r− i|/|r− i| = 1, enough for c(r) ∈ S1.

3. The semicircle z(θ) = −b +
√

1 + b2cis(θ), with b ≥ 0 and 0 ≤ θ ≤ π, to a line
segment in the unit circle passing through two antipodal points.

Since we know by the point above that c(z) maps the real axis to the unit circle,
we look for the real values of z(θ). Those are z(0) = −b+

√
1 + b2 and z(π) = −b−√

1 + b2. Those points are sent to c(z(0)) = (−b+
√

1 + b2− i)/(−b+
√

1 + b2 + i)
and c(z(π)) = (−b−

√
1 + b2 − i)/(−b−

√
1 + b2 + i), both clearly in S1. We now

check that they differ by a sign:

c(z(0))

c(z(π)
=
−b+

√
1 + b2 − i

−b+
√

1 + b2 + i
· −b−

√
1 + b2 + i

−b−
√

1 + b2 − i
=

2i
√

1 + b2

−2i
√

1 + b2
= −1.

Thus c(z(0)) = −c(z(π)) and thus are antipodal in S1.

Finally, to verify that the image is indeed a straight line and not a circle, we will
find the point that is sent to the 0, that is, we are looking for θ with c(z(θ)) = 0.
We impose:

−b+
√

1 + b2(cos(θ) + i sin(θ))− i = 0 =⇒

{
−b+

√
1 + b2 cos(θ) = 0√

1 + b2 sin(θ)− 1 = 0

and thus: {
cos(θ) = b√

1+b2

sin(θ) = 1√
1+b2

=⇒ θ0 = sin−1
(

1√
1 + b2

)
which is a valid solution since cos(sin−1(α)) =

√
1− α2, thus cos(θ0) = b/

√
1 + b2,

and 1/
√

1 + b2 is always positive and less than or equal to 1.

Since we found a solution θ0, we will have three aligned points c(z(0)), c(z(π)) and
c(z(θ0)), thus the image will be a line segment, verifying the required conditions.
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Exercise 8

We define:

SU(1, 1) =

{
g ∈ SL2(C) : g∗

(
−1 0
0 1

)
g =

(
−1 0
0 1

)}
where g∗ is the conjugate transpose of g. We prove that:

1. Given ∆ = {z ∈ C : |z| ≤ 1}, the equality:

∆ =

{
z ∈ C :

(
z
1

)∗(−1 0
0 1

)(
z
1

)
> 0

}
.

This follows from the computation:(
z
1

)∗(−1 0
0 1

)(
z
1

)
=
(
z 1

)(−z
1

)
= 1− |z|

and thus:

z ∈ ∆ ⇐⇒ 1− |z| > 0 ⇐⇒ z ∈
{
z ∈ C :

(
z
1

)∗(−1 0
0 1

)(
z
1

)
> 0

}
.

2. The action of SU(1, 1) on P1 via Möbius transformations preserves the unit disk.
This ask us to, given a point z ∈ ∆ and an element g ∈ SU(1, 1), verify that
gz ∈ ∆. We thus identify z as above and compute (using the properties above and
the characterization of g):(

g

(
z
1

))∗(−1 0
0 1

)(
g

(
z
1

))
=

(
z
1

)∗
g∗
(
−1 0
0 1

)
g

(
z
1

)
=

=

(
z
1

)∗(−1 0
0 1

)(
z
1

)
> 0 =⇒ g

(
z
1

)
∈ ∆.

As mentioned, we have used indistinctly the characterization and the defining
properties of g ∈ SU(1, 1) and z ∈ ∆.

3. Consider a ∈ ∆ and φa(z) = (z − a)/(1− az) acting on z ∈ ∆. To find its matrix
form, we recall that: (

a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
=

(
az+b
cz+d

1

)
,

the last equality being true in P1. Thus:

φa =
1√

1− |a|2

(
1 −a
−a 1

)
where the multiplying factor adjusts the matrix so that it has determinant one (we
may observe that we can divide since |a| < 1 and that this multiplicative factor
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will not affect the final value of the operation since we are in P1 where having a
non zero factor multiplying does not affect the result). Now:(

1√
1−|a|2

(
1 −a
−a 1

))∗(−1 0
0 1

)(
1√

1−|a|2

(
1 −a
−a 1

))
=

= 1
1−|a|2

(
1 −a
−a 1

)(
−1 0
0 1

)(
1 −a
−a 1

)
=

= 1
1−|a|2

(
−1 −a
a 1

)(
1 −a
−a 1

)
= 1

1−|a|2

(
−1 + |a|2 0

0 1− |a|2
)

=

(
−1 0
0 1

)
and thus φa ∈ SU(1, 1).
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