Complex Variables I - Homework 1

Pablo Sánchez Ocal
September 12th, 2016

Exercise 1

We want to prove that every topological space X that is path connected is also connected.
We proceed by contradiction: suppose we can write $X=A \cup B$ with A, B open, non empty, $A \cap B=\emptyset$. Then take $x \in A, y \in B$ and since X is path connected, there exists a continuous $\gamma:[0,1] \longrightarrow X$ with $\gamma(0)=x, \gamma(1)=y$; in particular $A \cap \gamma([0,1]) \neq \emptyset$ and $B \cap \gamma([0,1]) \neq \emptyset$. Since $[0,1]$ is connected and γ is continuous, $\gamma([0,1])$ is also connected, meaning that either $\gamma([0,1]) \subset A$ or $\gamma([0,1]) \subset B$ (entirely contained), rewritten; $B \cap \gamma([0,1])=\emptyset$ or $A \cap \gamma([0,1])=\emptyset$, a contradiction.

Exercise 2

We want to prove that a topological space X is compact if and only if every centered system of closed sets has non empty intersection.
$\Rightarrow)$ We have X compact, take a centered system of closed sets $\left\{T_{i}\right\}_{i \in I}$. We proceed by contradiction: suppose $\bigcap_{i \in I} T_{i}=\emptyset$, then $X=\left(\bigcap_{i \in I} T_{i}\right)^{C}=\bigcup_{i \in I} T_{i}^{C}$. Since T_{i}^{C} is open for every $i \in I$, we obtain an open cover of X, thus by compactness, there is $N \subset I$ a finite subset with $X=\bigcup_{i \in N} T_{i}^{C}=\left(\bigcap_{i \in I} T_{i}\right)^{C}$, in particular $\emptyset=\bigcap_{i \in N} T_{i}$. This is a contradiction since $\left\{T_{i}\right\}_{i \in I}$ was a centered system of closed sets.
$\Leftrightarrow)$ We have that in X every centered system of closed sets has non empty intersection. Take $\left\{U_{i}\right\}_{i \in I}$ an open cover: $X=\bigcup_{i \in I} U_{i}$, in particular it defines $\left\{U_{i}^{C}\right\}_{i \in I}$ a system of closed sets with $\emptyset=\left(\bigcup_{i \in I} U_{i}\right)^{C}=\bigcap_{i \in I} U_{i}^{C}$. We proceed by contradiction: suppose X is not compact, if we prove that $\left\{U_{i}^{C}\right\}_{i \in I}$ is a centered system, this immediately contradicts the original hypothesis. If X is not compact, then $X \neq \bigcup_{i \in N} U_{i}$ for every finite subset $N \subset I$, meaning that $\emptyset \neq\left(\bigcup_{i \in N} U_{i}\right)^{C}=\bigcap_{i \in N} U_{i}^{C}$, which shows that $\left\{U_{i}^{C}\right\}_{i \in I}$ has the finite intersections non empty and thus it is a centered system, as desired.

Exercise 3

We want to prove that whenever we have $K \subset X$ a compact subset of a Hausdorff space, then it is closed.

We prove that K^{C} is open. Let $x \in K^{C}$, for every $y \in K$ consider $U_{y} \ni x$ and $V_{y} \ni y$, whose existence is guaranteed by X being Hausdorff. Clearly $\left\{V_{y}\right\}_{y \in K}$ is an open cover of K, this being compact means that there exists $N \subset K$ such that $\left\{V_{y}\right\}_{y \in N}$ is an open cover. Now $x \in \bigcap_{x \in N} U_{x}$ which is open (since it is a finite intersection) and it does not intersect K since none of its components does, meaning that K^{C} is open.

Exercise 4

We want to prove that in a metric space (X, d) every convergent sequence is Cauchy.
A sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ converges to S when for every $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that $d\left(S_{n}, S\right) \leq \varepsilon$ for $n>N$. A sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy when for every $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that $d\left(S_{n}, S_{m}\right)>\varepsilon$ for $n, m>N$.

Consider $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ a convergent sequence, then for $\varepsilon>0$ take $N \in \mathbb{N}$ such that $d\left(S_{n}, S\right) \leq \varepsilon / 2$. Then $d\left(S_{n}, S_{m}\right) \leq d\left(S_{n}, S\right)+d\left(S, S_{m}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon$ for $n, m>N$ and $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy.

Exercise 5

We consider for $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ distinct complex numbers, the cross ratio:

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)}
$$

Given any Möbius transformation, we want to prove that $\left[T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right]=$ $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$. Since any such T can be constructed via translations $b \in \mathbb{R}$, inversions and a scaling $c \in \mathbb{R}$, it is enough to prove that the cross ratio remains invariant by them:

1. $\left[T_{b}\left(z_{1}\right), T_{b}\left(z_{2}\right), T_{b}\left(z_{3}\right), T_{b}\left(z_{4}\right)\right]=\frac{\left(z_{1}+b-z_{3}-b\right)\left(z_{2}+b-z_{4}-b\right)}{\left(z_{2}+b-z_{3}-b\right)\left(z_{1}+b-z_{4}-b\right)}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$,
2. $\left[I\left(z_{1}\right), I\left(z_{2}\right), I\left(z_{3}\right), I\left(z_{4}\right)\right]=\frac{\left(\frac{1}{z_{1}}-\frac{1}{z_{3}}\right)\left(\frac{1}{z_{2}}-\frac{1}{z_{4}}\right)}{\left(\frac{1}{z_{2}}-\frac{1}{z_{3}}\right)\left(\frac{1}{z_{1}}-\frac{1}{z_{4}}\right)}=\frac{\frac{z_{3}-z_{1}}{z_{1} z_{3}} \frac{z_{4}-z_{2}}{z_{2} z_{4}}}{\frac{z_{3}-z_{2}}{z_{2} z_{3}} \frac{z_{4}-z_{1}}{z_{1} z^{4}}}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$,
3. $\left[S_{c}\left(z_{1}\right), S_{c}\left(z_{2}\right), S_{c}\left(z_{3}\right), S_{c}\left(z_{4}\right)\right]=\frac{\left(c z_{1}-c z_{3}\right)\left(c z_{2}-c z_{4}\right)}{\left(c z_{2}-c z_{3}\right)\left(c z_{1}-c z_{4}\right)}=\frac{c\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{c\left(z_{2}-z_{3}\right)\left(z_{1}-z_{4}\right)}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$.

The first and third points being obvious, and the second not much more complicated: we just have to note that all the denominators in the small fractions cancel each other, and the remaining is a scaling by $c=-1$, which is invariant since we proved it in the third point (alternatively, one may prefer to simply factor out -1 and cancel it out).

Exercise 6

We want to prove that if $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ distinct belong to a circle, then $\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \in \mathbb{R}$. For this, we will use T the Möbius transformation that takes:

$$
\begin{aligned}
& T\left(z_{2}\right) \longrightarrow 1 \\
& T\left(z_{3}\right) \longrightarrow 0 \\
& T\left(z_{4}\right) \longrightarrow \infty
\end{aligned}
$$

that we know exists since we can send any three points to any other three points. It can be readily checked that this transformation is:

$$
T(z)=\frac{\left(z-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z-z_{4}\right)}
$$

We know that a Möbius transformation (thus T in particular) takes clines to clines, and since we take $\left(z_{2}, z_{3}, z_{4}\right)$ to $(1,0, \infty)$, the last three points being aligned along the real line, we must have that $T\left(z_{1}\right)$ belongs to the real line. We have the equality $\left[T\left(z_{1}\right), T\left(z_{2}\right), T\left(z_{3}\right), T\left(z_{4}\right)\right]=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$ proven above, the fact that the four original points are distinct guarantee that this is a finite value and the fact that after the transformation we belong in the real line guarantee that this value is a real one: a relation between real values is a real value.

Exercise 7

We have the Möbius transformation $c(z)=(z-i) /(z+i)$, we want to see that:

1. Takes i to $0: z(i)=(i-i) /(i+i)=0$.
2. The real axis to the unit circle, that is, for every $r \in \mathbb{R}$ we have $c(r) \in S^{1}$: $|c(r)|=|(r-i) /(r+i)|=|r-i| /|r+i|=|r-i| /|r-i|=1$, enough for $c(r) \in S^{1}$.
3. The semicircle $z(\theta)=-b+\sqrt{1+b^{2}} \operatorname{cis}(\theta)$, with $b \geq 0$ and $0 \leq \theta \leq \pi$, to a line segment in the unit circle passing through two antipodal points.
Since we know by the point above that $c(z)$ maps the real axis to the unit circle, we look for the real values of $z(\theta)$. Those are $z(0)=-b+\sqrt{1+b^{2}}$ and $z(\pi)=-b-$ $\sqrt{1+b^{2}}$. Those points are sent to $c(z(0))=\left(-b+\sqrt{1+b^{2}}-i\right) /\left(-b+\sqrt{1+b^{2}}+i\right)$ and $c(z(\pi))=\left(-b-\sqrt{1+b^{2}}-i\right) /\left(-b-\sqrt{1+b^{2}}+i\right)$, both clearly in S^{1}. We now check that they differ by a sign:

$$
\frac{c(z(0))}{c(z(\pi)}=\frac{-b+\sqrt{1+b^{2}}-i}{-b+\sqrt{1+b^{2}}+i} \cdot \frac{-b-\sqrt{1+b^{2}}+i}{-b-\sqrt{1+b^{2}}-i}=\frac{2 i \sqrt{1+b^{2}}}{-2 i \sqrt{1+b^{2}}}=-1
$$

Thus $c(z(0))=-c(z(\pi))$ and thus are antipodal in S^{1}.
Finally, to verify that the image is indeed a straight line and not a circle, we will find the point that is sent to the 0 , that is, we are looking for θ with $c(z(\theta))=0$. We impose:

$$
-b+\sqrt{1+b^{2}}(\cos (\theta)+i \sin (\theta))-i=0 \Longrightarrow\left\{\begin{array}{l}
-b+\sqrt{1+b^{2}} \cos (\theta)=0 \\
\sqrt{1+b^{2}} \sin (\theta)-1=0
\end{array}\right.
$$

and thus:

$$
\left\{\begin{array}{l}
\cos (\theta)=\frac{b}{\sqrt{1+b^{2}}} \\
\sin (\theta)=\frac{1}{\sqrt{1+b^{2}}}
\end{array} \quad \Longrightarrow \theta_{0}=\sin ^{-1}\left(\frac{1}{\sqrt{1+b^{2}}}\right)\right.
$$

which is a valid solution since $\cos \left(\sin ^{-1}(\alpha)\right)=\sqrt{1-\alpha^{2}}$, thus $\cos \left(\theta_{0}\right)=b / \sqrt{1+b^{2}}$, and $1 / \sqrt{1+b^{2}}$ is always positive and less than or equal to 1 .
Since we found a solution θ_{0}, we will have three aligned points $c(z(0)), c(z(\pi))$ and $c\left(z\left(\theta_{0}\right)\right)$, thus the image will be a line segment, verifying the required conditions.

Exercise 8

We define:

$$
\mathrm{SU}(1,1)=\left\{g \in \mathrm{SL}_{2}(\mathbb{C}): g^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) g=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

where g^{*} is the conjugate transpose of g. We prove that:

1. Given $\Delta=\{z \in \mathbb{C}:|z| \leq 1\}$, the equality:

$$
\Delta=\left\{z \in \mathbb{C}:\binom{z}{1}^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{z}{1}>0\right\} .
$$

This follows from the computation:

$$
\binom{z}{1}^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{z}{1}=\left(\begin{array}{ll}
\bar{z} & 1
\end{array}\right)\binom{-z}{1}=1-|z|
$$

and thus:

$$
z \in \Delta \Longleftrightarrow 1-|z|>0 \Longleftrightarrow z \in\left\{z \in \mathbb{C}:\binom{z}{1}^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{z}{1}>0\right\}
$$

2. The action of $\operatorname{SU}(1,1)$ on \mathbb{P}^{1} via Möbius transformations preserves the unit disk. This ask us to, given a point $z \in \Delta$ and an element $g \in \operatorname{SU}(1,1)$, verify that $g z \in \Delta$. We thus identify z as above and compute (using the properties above and the characterization of g):

$$
\begin{gathered}
\left(g\binom{z}{1}\right)^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(g\binom{z}{1}\right)=\binom{z}{1}^{*} g^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) g\binom{z}{1}= \\
=\binom{z}{1}^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{z}{1}>0 \Longrightarrow g\binom{z}{1} \in \Delta .
\end{gathered}
$$

As mentioned, we have used indistinctly the characterization and the defining properties of $g \in \operatorname{SU}(1,1)$ and $z \in \Delta$.
3. Consider $a \in \Delta$ and $\phi_{a}(z)=(z-a) /(1-\bar{a} z)$ acting on $z \in \Delta$. To find its matrix form, we recall that:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z}{1}=\binom{a z+b}{c z+d}=\binom{\frac{a z+b}{c z+d}}{1},
$$

the last equality being true in \mathbb{P}^{1}. Thus:

$$
\phi_{a}=\frac{1}{\sqrt{1-|a|^{2}}}\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)
$$

where the multiplying factor adjusts the matrix so that it has determinant one (we may observe that we can divide since $|a|<1$ and that this multiplicative factor
will not affect the final value of the operation since we are in \mathbb{P}^{1} where having a non zero factor multiplying does not affect the result). Now:

$$
\begin{gathered}
\left(\frac{1}{\sqrt{1-|a|^{2}}}\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)\right)^{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\frac{1}{\sqrt{1-|a|^{2}}}\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)\right)= \\
=\frac{1}{1-|a|^{2}}\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)= \\
=\frac{1}{1-|a|^{2}}\left(\begin{array}{cc}
-1 & -a \\
\bar{a} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -a \\
-\bar{a} & 1
\end{array}\right)=\frac{1}{1-|a|^{2}}\left(\begin{array}{cc}
-1+|a|^{2} & 0 \\
0 & 1-|a|^{2}
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

and thus $\phi_{a} \in \mathrm{SU}(1,1)$.

