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Exercise 1

Let f , g be analytic functions on an open set U 3 z0 with f(z0) = g(z0) = 0 and
g′(z0) 6= 0. Then:

lim
z→z0

f(z)

g(z)
= lim

z→z0

f(z)− f(z0)

g(z)− g(z0)

z − z0

z − z0
= lim

z→z0

f(z)− f(z0)

z − z0

z − z0

g(z)− g(z0)

= lim
z→z0

f(z)− f(z0)

z − z0
lim
z→z0

z − z0

g(z)− g(z0)
= f ′(z0)

1

g′(z0)

where we use the fact that when limits exist, the limit of a multiplication is the multi-
plication of limits. Since g′(z0) 6= 0, this is well defined.
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Exercise 2

We derive the form of the Cauchy Riemann equations in polar coordinates. Note that
since x + iy = r(cos(θ) + i sin(θ)) then x = r cos(theta), y = r sin(theta). Then when
f(z) = f(x, y) = u(x, y) + iv(x, y) we have:

∂u

∂r
=
∂u

∂x

dx

dr
+
∂u

∂y

dy

dr
=
∂u

∂x
cos(θ) +

∂u

∂y
sin(θ)

1

r

∂v

∂θ
=
∂v

∂x

dx

dθ
+
∂v

∂y

dy

dθ
=
∂v

∂x
(− sin(θ)) +

∂v

∂y
cos(θ) =

∂u

∂x
cos(θ) +

∂u

∂y
sin(θ)

and:

∂v

∂r
=
∂v

∂x

dx

dr
+
∂v

∂y

dy

dr
=
∂v

∂x
cos(θ) +

∂v

∂y
sin(θ)

−1

r

∂u

∂θ
=
∂u

∂x

dx

dθ
+
∂u

∂y

dy

dθ
=
∂u

∂x
cos(θ) +

∂u

∂y
(− sin(θ)) =

∂v

∂x
cos(θ) +

∂v

∂y
sin(θ)

where we have used the standard Cauchy Riemann equations to prove the equality. Thus:

∂u

∂r
=

1

r

∂v

∂θ
∂v

∂r
=
−1

r

∂u

∂θ
.

Note that f(z) = zn = rneinθ = rn(cos(nθ) + i sin(nθ)) and then:

∂u

∂r
= nrn−1 cos(nθ)

1

r

∂v

∂θ
=

1

r
rnn cos(nθ) = nrn−1 cos(nθ)

∂v

∂r
= nrn−1 sin(nθ)

−1

r

∂u

∂θ
=
−1

r
rn(− sin(θ)) = nrn−1 sin(nθ)

and f(z) is holomorphic.
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Exercise 3

We construct a branch of f(z) =
√
z2 − 1 on the complement of two half lines in C.

Let s = z2 − 1, we know that s1/2 = (elog(s))1/2 = elog(s)/2 when log(s) is well defined.
Now, log(t) for t ∈ C is well defined in C \ (−∞, 0] since we need to remove 0 and a
half line. Thus since s = 0 if and only if z2 = 1 that is z = ±1, the change of variables
s = z2 − 1 translates 0 to −1 and adds +1 as a conflict. Thus we need to remove
another half line to make log(s) well defined, say the line [1,+∞). This means that in
C \ ((−∞,−1] ∪ [1,+∞)) (the complement of two half lines, as desired) we have that
log(s) is well defined, and thus f(z) = s1/2 = elog(s)/2 is well defined.
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Exercise 4

Show that if f(z) = f(2z) then f(z) is constant: note that f(z) = f(z/2n) for any
n ∈ N+. Since f is continuous, for any ε > 0 given, there is a δ > 0 such that if |t−0| < δ
then |f(t)−f(0)| < ε. Choose n with |z/2n| < δ, then |f(z)−f(0)| = |f(z/2n)−f(0)| < ε
and then f(z) = f(0) for every z ∈ C.

If f : ∆ −→ C is continuous, the above remains true since the important point of
argument is when considering points that are as close to 0 ∈ ∆ ⊂ C as we desire.
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Exercise 5

Find the radius of convergence of:

1.
∑∞

n=0 a
n2
zn, a > 0: using the characterization given in Conway’s book:

R = lim
n

∣∣∣∣ anan+1

∣∣∣∣ = lim
n

∣∣∣∣∣ an
2

a(n+1)2

∣∣∣∣∣ = lim
n

∣∣∣∣ 1

a2n+1

∣∣∣∣ =


0 when a > 1

1 when a = 1

+∞ when a < 1

2.
∑∞

n=0 z
n!: which clearly diverges if z = 1, thus R ≤ 1. If |z| < 1, then there is

r > 1 with |z| < 1/r < 1 thus:

∞∑
n=0

|z|n! <

∞∑
n=0

1

rn!
<

∞∑
n=0

1

rn

which is the convergent geometric series. This means that R = 1.

3.
∑∞

n=0
(−1)n

n zn(n+1): notice that:

∞∑
n=0

∣∣∣∣(−1)n

n
zn(n+1)

∣∣∣∣ =

∞∑
n=0

|zn(n+1)|
n

which diverges if |z| = 1, and thus we must have R ≤ 1. When |z| < 1 using the
root test:

lim
n

∣∣∣∣∣zn(n+1)

n

∣∣∣∣∣
1/n

= lim
n

1

n1/n
lim
n
|z|n+1 = lim

n
|z|n = 0

because limn n
1/n = 1. Thus we have R = 1.

Consider now z = 1, we have
∑∞

n=0
(−1)n

n the harmonic series with a negative sign
everywhere, thus convergent.

Consider now z = 1, we have
∑∞

n=0
(−1)n(−1)n

2
(−1)n

n =
∑∞

n=0
(−1)n

n since n2 is odd

or even when n is odd or even respectively, thus (−1)n
2

= (−1)n. This is the same
harmonic series with a negative sign everywhere, thus convergent.

Consider now z = i, we have S =
∑∞

n=0
(−1)nin

2+n

n . Notice that in takes the values

i, −1, −i, 1 and then repeats again, that is, it is 4 periodic. Moreover, in
2

is 2
periodic since n2 ≡ 1 modulo 4 if n is odd (n ≡ 1 implies n2 ≡ 1 and n ≡ 3
implies n2 ≡ 9 ≡ 1) and n2 ≡ 0 modulo 4 if n is even (since it contains at least
two 2), meaning that in

2
takes the values i, 1 and then repeats. Thus in

2+n takes
the values −1, −1, 1, 1 and then repeats, that is, it is 4 periodic. To prove it is
convergent, we will compare it to H the harmonic series:

H = 1− 1

2
+

1

3
− 1

4
+ . . .

S = −1− 1

2
+

1

3
+

1

4
− . . .
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and then:

H + S = 2

(
−1

2
+

1

3
− 1

6
+

1

7
− . . .

)
since the signs are +, −, +, − against −, −, +, + meaning that we add the second
and third terms of each 4, which correspond to an even and an odd number in the
denominator respectively. Thus we have H + S < 2H with H being convergent,
meaning that S converges.
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Exercise 6

Let α : [0, 1] −→ S1 be continuous, show that for any real number θ0 with α(0) = eiθ0

there exists a unique continuous map θ : [0, 1] −→ R with α(t) = eiθ(t), θ(0) = θ0 for
t ∈ [0, 1].

We have α(t) = eiα ∈ S1, let θ0 = $ + 2πk for ϕ ∈ [0, 2π) and k ∈ Z fixed (we can
do this because we always have eiθ = ei$ for certain $ ∈ [0, 2π) and their difference is
a multiple of 2π by the properties of the exponential). We define:

θ : [0, 1] −→ R
t 7−→ arg(α(t)) + 2πk

where arg(z) ∈ [0, 2π) is the argument of the complex number z ∈ C.
This is well defined since if there are t, t′ with α(t) = α(t′) then arg(α(t)) = arg(α(t′))

since both are in [0, 2π). Moreover α(t) = eiarg(α(t)) = eiarg(α(t))+i2πk = eiθ(t), thus we
only have to verify continuity. For this, we use the Lebesgue Covering Lemma, that we
can apply since S1 is compact. Given ε < 0, we want to find δ < 0 such that when
|t − s| < δ then |θ(t) − θ(s)| < ε. We have that S1 =

⋃
w∈S1 Bε(w), which is an open

cover, and by the Lebesgue Covering Lemma there exists an δ > 0 such that if t ∈ S1

then Bδ(t) ⊂ Bε(z) for some z ∈ S1. Thus s ∈ Bδ(t) if and only if |t − s| < δ which
implies |arg(α(t))−arg(α(t))| < ε by local continuity of arg(z) (in the whole S1 we have
that arg(z) is not continuous, but locally it is well defined, and such well definitions are
coherent with the fact that adding any multiple of 2π yields the same angle in S1) and
α(t). We can use now this to see that |θ(t)− θ(s)| = |arg(α(t))− arg(α(t))| < ε and θ(t)
is continuous.

Suppose we have β : [0, 1] −→ R with the conditions above, then eiθ(t) = α(t) = eiβ(t)

thus θ(t) = β(t) + 2πn for some n ∈ Z, but since θ(0) = β(0), we must have n = 0 and
β(t) = θ(t).
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Exercise 7

We are given three properties, we want to prove that there is a geodesic between any
two points in ∆. Consider a, b ∈ ∆, then the map φa ∈ SU(1, 1) used in the Exercise 8
from the first problem set sends a to 0 and b to φa(b) ∈ ∆. Suppose φa(b) = reiθ, then
a multiplication by e−iθ would send 0 to 0 and φa(b) to r ∈ R. We note that we can

write a multiplication e−iθz = e−iθz+0
0z+1 = e−iθ/2z+0

0z+eiθ/2
meaning that it is represented by the

matrix:(
e−iθ/2 0

0 eiθ/2

)
with

(
eiθ/2 0

0 e−iθ/2

)(
−1 0
0 1

)(
e−iθ/2 0

0 eiθ/2

)
=

(
−1 0
0 1

)
that is, this multiplication is an element of SU(1, 1). What we have now is 0 and r, both
in the real line, but we know that (−1, 1) is a geodesic, and it goes through 0 and r,
meaning that there is a geodesic between those two points. But since the operations we
have used are elements of SU(1, 1), in particular invertibles and preserving geodesics,
the geodesic we found between 0 and r is sent via (e−iθ ·φa)−1 to a geodesic from a to b.
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Exercise 8

Show that relative to ρ∆ the geodesics are always given by intersection with ∆ of either
a line or a circle which intersects the boundary of the disk at right angles.

Note that all the geodesics we found in the exercise above are via Möbius transfor-
mations of the geodesic (−1, 1), which is part of a line. Since Möbius transformations
send clines to clines, any geodesic will be a cline (that is, a line or a cirlce) intersecting
∆.

Moreover, note that since SU(1, 1) sends geodesics to geodesics, and geodesics are
locally length minimizing curves (and the distance between two points is the smallest
length of any curve between them), we have that SU(1, 1) must preserve distances.
This means that SU(1, 1) are isometries, in particular they preserve angles (an angle
between vectors is defined relatively to the inner product and the length of vectors, and
isometries preserve both since the inner product is given by the distance). Thus since
(−1, 1) intersect the boundary of the disk at right angles, any other geodesic must also
preserve such angle, thus they intersect the boundary of the disk at right angles.
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Exercise 9

Let T be a non Euclidean triangle in ∆ determined by the geodesic segments A, B,
C with intersections A ∩ C, B ∩ C, A ∩ B at angles α, β, γ respectively. Show that
α+ β + γ < π.

Note that given the intersections, they cannot all three be in a straight line (unless
all geodesic segments are in the same geodesic, but then T is not a triangle). Thus, one
of them must have real part smaller or bigger (or equal, in such a case we just choose
one) than the rest. We suppose the case is the former (the latter results by an analogous
reasoning) and that such a point is A ∩C (by renaming the geodesics if necessary). We
can assume that it has positive real part, since having negative real part will follow by
an analogous reasoning.

The transformation φA∩C sends A ∩ C to 0, B ∩ C to φA∩C(B ∩ C) = b, A ∩ B to
φA∩C(A ∩ B) = a. For further commodity, by rotating the points if necessary, we may
assume that a lies on the real line and b has positive complex part. This can be done
since before rotating b and a must have different imaginary part (by the choice of A∩C
having smallest positive real part), thus we rotate accordingly to what we want.

Note that after applying the steps above, the original geodesic segments A and C are
transformed into geodesic segments A′, C ′ obtained from (−1, 1) by a simple rotation,
since such are the form of the geodesics passing through 0 (that is, A′ and C ′ are lines).
Since this is done via elements of SU(1, 1), angles are preserved. We can now reason
with 0, b, a and the respective angles. Note that the geodesic segment B′ going from b
to a, that is, the one obtained from B, is a segment of a circle since it does not contain
0 and it must intersect with the boundary of the disk at right angles. Since we are in
the side with positive real part and the circle obtained must intersect with the boundary
of the disk at right angles, all points of such a segment of a circle must have real part
smaller than the real part of the line l going directly from b to a (except at the points b
and a, where B′ and l coincide).

Now A′, C ′, l determine an Euclidean triangle and A′, C ′, B′ determine a non
Euclidean triangle with the same angles as the original T . But we have that the second
triangle is strictly contained inside the first because B′ has real part smaller than l and
they coincide in the vertexes: thus the angles between A′ and B′, C ′ and B′ are strictly
smaller than the angles between A′ and l, C ′ and l respectively. This means that the
sum of the angles of the second triangle must be strictly smaller. But since the first
triangle is Euclidean, the sum of its angles is π, thus α+ β + γ < π, as desired.
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