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Problem 5 (p.74)

Give the power series expansion of f(z) = log(z) about z = i and the radius of conver-
gence.

Since f(z) is analytic around z = i, we know that is has a power series expansion
f(z) =

∑∞
n=0 f

(n)(i)(z − i)n/n!. Now:

f ′(z) =
1

z
, f ′′(z) =

−1

z2
, f ′′′(z) =

2

z3
, . . . , f (n)(z) =

(−1)n−1(n− 1)!

zn
,

and since for n = 0 we have log(i) = iπ/2, this means that:

f(z) =
iπ

2
+
∞∑
n=1

(−1)n−1(n− 1)!

in
(z − i)n

n!
=
iπ

2
−
∞∑
n=1

in

n!
(z − i)n

since 1/in = (−1)nin.
Notice that since f(0) = log(0) is not well defined, we have a radius of convergence

R ≤ 1. However, since f(z) is well defined in B1(i), by [1, Theorem 2.8 (p. 72)] we have
that R ≥ 1 and thus R = 1. This argument of computing the radius of convergence by
simply finding an element where the power series does not converge but does for smaller
radius will be used in the following problems without such a detailed explanation.
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Problem 7 (p.74)

Evaluate the following integrals. In this exercise we will constantly use [1, Corollary 2.13

(p.73)], that is, f (k)(a) = k!
2πi

∫
γ

f(z)dz
(z−a)k+1 where γ(t) = a + reit for a ∈ C, r ∈ R+ and

0 ≤ t < 2π.

1.
∫
γ e

izdz/z2, γ(t) = eit, 0 ≤ t < 2π. Note that setting f(z) = eiz (analytic

everywhere) we have f ′(z) = ieiz thus:∫
γ

eizdz

z2
= 2πif ′(0) = −2π.

2.
∫
γ dz/(z − a), γ(t) = a + reit, 0 ≤ t < 2π. Note that setting f(z) = 1 (analytic

everywhere) we have: ∫
γ

dz

z − a
= 2πif(a) = 2πi.

3.
∫
γ sin(z)dz/z3, γ(t) = eit, 0 ≤ t < 2π. Note that setting f(z) = sin(z) (analytic

everywhere) we have f ′′(z) = − sin(z) thus:∫
γ

sin(z)dz

z3
=

2πi

2
f ′′(0) = 0.

4.
∫
γ log(z)dz/zn, γ(t) = 1 + eit/2, 0 ≤ t < 2π, n ≥ 0. Note that this integral is well

defined on C \ (−∞, 0), which includes B1/2(1). Hence log(z)dz/zn is analytic
where we want to integrate and γ is a closed path, by [1, Proposition 2.15 (p. 73)]
we have: ∫

γ

log(z)dz

z3
= 0.
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Problem 9 (p.75)

Evaluate the following integrals. As in the exercise above, we will constantly use [1,

Corollary 2.13 (p.73)], that is, f (k)(a) = k!
2πi

∫
γ

f(z)dz
(z−a)k+1 where γ(t) = a+ reit for a ∈ C,

r ∈ R+ and 0 ≤ t < 2π.

1.
∫
γ (ez − e−z)dz/zn, γ(t) = eit, 0 ≤ t < 2π. Note that setting f(z) = ez − e−z

(analytic everywhere) we have f (n)(z) = ez + (−1)n−1e−z thus:∫
γ

(ez − e−z)dz
zn

=
2πif (n−1)(0)

(n− 1)!
=

2πi(1 + (−1)n)

(n− 1)!
=

{
4πi

(n−1)! if n even,

0 if n odd.

2.
∫
γ dz/(z − 1/2)n, γ(t) = 1/2+eit, 0 ≤ t < 2π. Note that setting f(z) = 1 (analytic

everywhere) we have f (n)(z) = 0 for n > 1 thus:∫
γ

dz

(z − 1/2)n
=

2πif (n)(1/2)

n!
=

{
2πi if n = 1,

0 if n 6= 1.

3.
∫
γ dz/(z

2 + 1), γ(t) = 2eit, 0 ≤ t < 2π. For this, we will try to find A and B such
that:

1

z2 + 1
=

A

z − i
+

B

z + i

Az +Ai+Bz −Bi
z2 + 1

thus we have: {
A+B = 0

Ai−Bi = 1
=⇒ A = 1/2i, B = −1/2i.

Observe now that both i,−i ∈ B2(0) and setting f(z) = 1 (analytic everywhere)
we have: ∫

γ

dz

z − i
= 2πif(i) = 2πi = 2πif(−i) =

∫
γ

dz

z + i
.

This means that:∫
γ

dz

z2 + 1
=

∫
γ

1

2i

dz

z − i
−
∫
γ

1

2i

dz

z + i
=

2πi

2i
− 2πi

2i
= 0.

4.
∫
γ z

1/mdz/(z − 1)m, γ(t) = 1 + eit/2, 0 ≤ t < 2π, n ≥ 0. Set f(z) = z1/m (analytic

everywhere), we have:

f ′(z) =
1

m
z1/m−1, . . . , f (k) =

(
1

m

)
· · ·
(

1

m
− (k − 1)

)
z1/m−k.

Hence now:∫
γ

z1/mdz

(z − 1)m
=

2πif (m−1)(1)

(m− 1)!
=

2πi

(m− 1)!

(
1

m

)
· · ·
(

1

m
− (m− 2)

)
.
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If we want to write the right hand side in a more compact way, we can say:∫
γ

z1/mdz

(z − 1)m
=

2πi

(m− 1)!mm−1

m−2∏
j=0

(1− jm).
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Problem 12 (p.75)

Show that sec(z) = 1 +
∑∞

k=1E2kz
2k/(2k)!, compute the radius of convergence, show

that E2n −
(

2n
2n−2

)
E2n−2 + · · ·+

(
2n
2

)
E2 + (−1)n = 0 and evaluate E2, E4, E6, E8.

We know that sec(z) = 1/ cos(z). This means that sec(z) is analytic in a neigh-
borhood of 0 since sec(0) = 1. Thus, we can expand as a power series sec(z) =∑∞

n=0 f
(n)(0)zn/n!. In particular by the above the term n = 0 is 1 thus:

sec(z) = 1 +
∞∑
n=1

f (n)(0)zn

n!
.

Moreover, since cos(z) is an even function, sec(z) must be an even function, meaning
that all the coefficients of the terms zk with k odd must be zero. Hence:

sec(z) = 1 +
∞∑
n=1

f (2n)(0)z2n

(2n)!
,

the desired result by setting the constants E2k = f (2k)(0). As mentioned and justified in
an exercise above, the radius of convergence will be the closest distance to a non analytic
point, that is, a point where cos(z) = 0. The closest to 0 is z = π/2, thus the radius of
convergence is R = π/2.

Now, since we have 1 = cos(z) sec(z) both analytic in Bπ/2(0), we can multiply the
series and think of them as large polynomials:

1 =

( ∞∑
i=0

(−1)iz2i

(2i)!

) ∞∑
j=0

E2jz
2j

(2j)!

 =
∞∑
k=0

 k∑
j=0

(−1)k−jE2j

(2i)!(2k − 2j)!

 z2k

where the way to see this is, first that the coefficients will stay powers of z2k for k from 0
to∞ since we are multiplying among them, second that by taking k = i+j the coefficient
of the term z2k, we pick j from 0 to k from the second series and we then adjust for
i = k − j the term we will need from the first series. This same method of rearranging
the multiplication will be used in the following exercise. For k = 0 we indeed have 1 (we
are multiplying 1 · 1) and when k > 0 we need to have the coefficients equal to 0, thus
we obtain:

0 =
k∑
j=0

(−1)k−jE2j

(2i)!(2k − 2j)!
=

k∑
j=0

(−1)k−jE2j

(
2k

2j

)
by multiplying by (2k)!. This is precisely E2n−

(
2n

2n−2
)
E2n−2 + · · ·+

(
2n
2

)
E2 + (−1)n = 0.

We notice that we already ”found” E0 = 1 for this to work, since the first term of
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the sec(z) expansion is 1. Now setting k ∈ {1, 2, 3, 4} we obtain:

0 = (−1) + E2

(
2

2

)
=⇒ E2 = 1

0 = (+1)− 1 ·
(

4

2

)
+ E4

(
4

4

)
=⇒ E4 = 5

0 = (−1) + 1 ·
(

6

2

)
− 5 ·

(
6

4

)
+ E6

(
6

6

)
=⇒ E6 = 61

0 = (+1)− 1 ·
(

8

2

)
+ 5 ·

(
8

4

)
− 61 ·

(
8

6

)
+ E8

(
8

8

)
=⇒ E8 = 1285.
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Problem 13 (p.76)

Find the series expansion of (ez − 1)/z about 0 and determine its radius of convergence.
Determine the radius of convergence of f(z) = z/(ez − 1) =

∑∞
k=0 akz

k/k! and show
that a0 +

(
n+1
1

)
a1 + · · · +

(
n+1
n

)
an = 0. Show that ak = 0 for k > 1 odd. Compute

B2n = (−1)n−1a2n for n ∈ {1, 2, 3, 4, 5}.
Note that:

ez =
∞∑
k=0

zk

k!
=⇒ ez − 1 =

∞∑
k=1

zk

k!
=⇒ ez − 1

z
=
∞∑
k=1

zk−1

k!
=
∞∑
k=0

zk

(k + 1)!

where the first two equations have an infinite radius of convergence. Now, since (ez −
1)/z → 1 when z → 0 by L’Hospital rule, we have that we can extend (ez−1)/z by 1 for
z = 0 and still obtain an analytic function, thus what we have done above is perfectly
correct and the radius of convergence remains infinity.

For f(z) = z/(ez − 1), notice that the above remains true, thus for z = 0 we only
have a removable singularity. The radius of convergence is then (as explained in the
previous exercise) the distance from 0 to the nearest zeros of ez−1, which are z = ±2πi,
hence R = 2π.

Now, by the same reasoning as before, consider:

1 =
ez − 1

z

z

ez − 1
=

( ∞∑
i=0

zi

(i+ 1)!

) ∞∑
j=0

ajz
j

j!

 =

∞∑
k=0

 k∑
j=0

aj
j!(k + 1− j)!

 zk

Again for k = 0 we indeed have 1 (we are multiplying 1 · 1) thus a0 = 1 and when k > 0
we need to have the coefficients equal to 0, thus we obtain:

0 =

k∑
j=0

aj
j!(k + 1− j)!

=

k∑
j=0

aj

(
k + 1

j

)

by multiplying by (k + 1)!. This is precisely a0 +
(
k+1
1

)
a1 + · · · +

(
k+1
k

)
ak = 0. In

particular, we have:

0 = a0

(
2

0

)
+ a1

(
2

1

)
= 1 + 2a2 =⇒ a2 =

−1

2
.

Now, we are said that f(z) + z/2 is even, that is:

f(z) +
z

2
=

z

ez − 1
+
z

2
= 1 +

z

2
+
−z
2

+
∞∑
k=2

akz
k

k!

hence all the coefficients of the terms zk with k odd must be zero, that is, ak = 0 for
k > 1 odd.
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Set B2n = (−1)n−1a2n, notice that:

0 = 1

(
3

0

)
− 1

2

(
3

1

)
+ a2

(
3

2

)
=⇒ a2 =

1

6
=⇒ B2 =

1

6

0 = 1

(
5

0

)
− 1

2

(
5

1

)
+

1

6

(
5

2

)
+ a4

(
5

4

)
=⇒ a4 =

−1

30
=⇒ B4 =

1

30

0 = 1

(
7

0

)
− 1

2

(
7

1

)
+

1

6

(
7

2

)
+
−1

30

(
7

4

)
+ a6

(
7

6

)
=⇒ a6 =

1

42
=⇒ B6 =

1

42

0 = 1

(
9

0

)
− 1

2

(
9

1

)
+

1

6

(
9

2

)
+
−1

30

(
9

4

)
+

1

42

(
9

6

)
+ a8

(
9

8

)
=⇒ a8 =

−1

30

=⇒ B8 =
1

30

0 = 1

(
11

0

)
− 1

2

(
11

1

)
+

1

6

(
11

2

)
+
−1

30

(
11

4

)
+

1

42

(
11

6

)
+
−1

30

(
11

8

)
+ a10

(
11

10

)
=⇒ a10 =

5

66
=⇒ B10 =

5

66
.

A surprise that I encountered while working on this exercise is that here Conway we
does not define the Bernoulli numbers in the usual way. In every convention, the ak
we computed are the usual Bernoulli numbers, since they are the coefficients of the
expansion of z/(ez − 1), but here we change the sign of some of them to accommodate
Conway’s notation.
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Problem 1 (p.80)

Let f be an entire function with |f(z)| ≤ M |z|n for |z| > R, n ∈ N+, M ∈ R (all three
fixed). Show that f is a polynomial of degree n or less.

Since f is entire, we know by [1, Proposition 3.3 (p. 77)] that:

f(z) =

∞∑
k=0

f (k)(0)

k!
zk

with infinite radius of convergence. Thus, it is enough to prove that |f (k)(0)| = 0 for
k ≥ n+ 1, since then:

f(z) =
n∑
k=0

f (k)(0)

k!
zk

is a polynomial of the desired degree. Notice that setting γ(t) = reit for r > R and
0 ≤ t < 2π we have (by [1, Corollary 2.13 (p.73)]) for k ≥ n+ 1:

|f (k)(0)| =
∣∣∣∣ k!

2πi

∫
γ

f(z)dz

zk+1

∣∣∣∣ ≤ k!

2π

∫
γ

|f(z)||dz|
|zk+1|

≤ k!

2π

∫
γ

M |z|n|dz|
|zk+1|

=
k!2πr

2πrk+1−n =
k!M

rk−n

which goes to 0 as we increase r →∞ since k − n ≥ 1. This proves |f (k)(0)| = 0 which
yields the desired result.
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Problem 3 (p.80)

Find all entire functions with f(x) = ex for x ∈ R. Notice that if f is entire, then:

f(z) =
∞∑
k=0

f (k)(0)

k!
zk

with infinite radius of convergence. In particular, for x ∈ R we have:

∞∑
k=0

1

k!
zk = ex = f(x) =

∞∑
k=0

f (k)(0)

k!
xk

and since the radius of convergence is infinite, we can compare term by term and conclude
that f (k)(0) = 1 for every k ∈ N+, hence:

f(z) =
∞∑
k=0

1

k!
zk = ez

by definition.
Notice that this can also be proven with [1, Corollary 3.8 (p. 79)] since the set

{z ∈ C : f(z) = ez} contains R and in particular 0, which is a limit point.
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Problem 9 (p.80)

Let u : C −→ C be a harmonic function with u(z) ≥ 0 for every z ∈ C. Prove that it is
constant.

Since u is harmonic, by [1, Theorem 2.30 (p. 43)] there exists v : C −→ C a harmonic
function such that f(z) = u(z) + iv(z) is entire (i.e. analytic in C). In particular, the
function g(z) = e−f(z) is entire since the exponential is entire. But now:

|g(z)| = |eu(z)||eiv(z)| = |eu(z)| ≤ 1

since both u and v take real values and u is positive or zero. Hence g(z) is bounded
and by Liouville’s Theorem and thus constant. But this means that f(z) is constant,
meaning that we must have u(z) constant, as desired.
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