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Problem 1

Let f be an entire function with |f(z)| < log(|z|) for |z| > R. We show that f is constant
by proving that f ′ ≡ 0.

Let z ∈ C with |z| > R and γ(t) = z + reit for 0 ≤ t ≤ 2π (choose r big enough such
that BR(0) is inside Br(z)), we use Cauchy’s Integral Formula for the first derivative:

|f ′(z)| =
∣∣∣∣ 1

2π

∫
γ

f(w)dw

(w − z)2

∣∣∣∣ ≤ 1

2π

∫
γ

|f(w)||dw|
|w − z|2

≤ 1

2π

∫
γ

log(|z|)|dw|
r2

≤ 1

2π

log(r)2πr

r2

thus we have that:

|f ′(z)| ≤ log(r)

r
→ 0 when r →∞.

Hence for some fixed M > R we have that |f ′(z)| ≤ 1 when |z| > M . Moreover,
since BM (0) is a compact subspace and f ′ is continuous, it is bounded by some value,
|f ′(z)| ≤ N fixed. Hence f ′ is entire bounded in C, thus by Liouville’s Theorem f ′ is
constant, but since f ′ takes arbitrary small values in module, we must have f ′(z) = 0
for every z ∈ C. This means that f is constant.

2



Problem 2

Consider T (z) = (2z + 3)/(z + 2).

1. We clearly have that T fixes ±
√

3:

T (±
√

3) =
±2
√

3 + 3

±
√

3 + 2

∓
√

3 + 2

∓
√

3 + 2
=
−6± 4

√
3∓ 3

√
3 + 6

∓3 + 4
= ±
√

3.

2. Moreover, T preserves the circle passing through
√

3, −
√

3, i since we will compute
the cross ratio [−

√
3, i, T (i),

√
3] and obtain a real number. This means that all

four
√

3, −
√

3, i, T (i) lie on the same circle. Since T fixes ±
√

3, this means that
the triplets (

√
3,−
√

3, i) and (
√

3,−
√

3, T (i)) define the same circle, that is, T
preserves the circle we want.

For the computation, we have:

T (i) =
2i+ 3

i+ 2

i− 2

i− 2
=
i+ 8

5

thus:

[−
√

3, i, T (i),
√

3] =
−
√

3− i+8
5

−2
√

3

i−
√

3

i− i+8
5

=
(5
√

3 + i+ 8)(i−
√

3)

2
√

3(4i− 8)

but since we are only interested in proving that this is real, not in computing the
operation, we will divide and multiply by (4i+8), which will turn the denominator
into a real number, and we proceed with the numerator:

(5
√

3 + i+ 8)(i−
√

3)(4i+ 8) = (i(4
√

3 + 8)− 2(4
√

3 + 8))(4i+ 8)

and now we only have to verify that the complex part of this number vanishes (we
do not need to multiply the whole thing, just find the ones that contain i):

8i(4
√

3 + 8)− 8i(4
√

3 + 8) = 0

as desired. Hence the cross ratio is real, and we obtain the desired result.
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Problem 3

Let p(z) be a polynomial of degree n ∈ N, R big enough so that BR(0) contains every
root of p(z). Let γ(t) = Reit for 0 ≤ t ≤ 2π, prove that:∫

γ

p′(z)

p(z)
= 2nπi.

First, suppose that the zeros of p(z) are a1, . . . , am (all different) with respective
multiplicities k1, . . . , km (all non zero) with m ≤ n and obviously n = k1 + · · · + km.
Now we know that p(z) = (z − a1)k1p1(z) with the polynomial p1(a1) 6= 0, thus p′(z) =
k1(z − a1)k1−1p1(z) + (z − a1)k1p′1(z). Moreover:

p′(z)

p(z)
=
k1(z − a1)k1−1p1(z) + (z − a1)k1p′1(z)

(z − a1)k1p1(z)
=

k1
z − a1

+
p1(z)

p′1(z)
. (1)

This argument done m times implies that:

p′(z)

p(z)
=

k1
z − a1

+ · · ·+ km
z − am

,

hence (we can separate the integral in its sums):∫
γ

p′(z)

p(z)
=

∫
γ

k1
z − a1

+ · · ·+
∫
γ

km
z − am

= 2πik1 + · · ·+ 2πikm = 2nπi,

since we know that: ∫
γ

1

z − a
= 2πi when a inside γ.
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Problem 4

Let G ⊂ C be open and connected, a ∈ G, f : G\{a} −→ C holomorphic and f bounded
on a neighborhood of a (say by M fixed). Let:

g(z) =

{
(z − a)2f(z) if z 6= a

0 if z = a

we show:

1. Now g′(a) = 0:

|g′(a)| = | lim
h→0

g(a+ h)− g(a)

h
| = lim

h→0

|h2||f(a+ h)|
|h|

≤ lim
h→0
|h|M = 0.

2. Knowing that g is analytic (by Goursat’s Theorem), prove that f has a unique
analytic extension to a holomorpic function on G. We define:

f̃(z) =

{
g(z)

(z−a)2 if z 6= a
g(2)(a)

2 if z = a

we clearly have that f̃(z) = f(z) for z ∈ G \ {a}, have to prove that f̃ is analytic.
For this, we notice that since g is analytic and g(a) = 0 = g′(a), we can write its
series expansion as:

g(z) =
∞∑
n=0

g(n)(a)

n!
(z − a)n = (z − a)2

∞∑
n=2

g(n)(a)

n!
(z − a)n−2

thus:

f̃(z) =
∞∑
n=2

g(n)(a)

n!
(z − a)n−2,

which is analytic since it is continuously differentiable as a consequence of g being
analytic. This proves that f has at least one analytic extension f̃ .

Suppose we have another analytic function g̃ in G with g̃(z) = f(z) in G \ {a}.
This means that g̃(z) = f̃(z) in G \ {a}, which is an open connected subspace of
C, hence g̃ ≡ f̃ by [1, Corollary 3.9, p. 79].
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Problem 5

Let f be entire with f(C) ⊂ C \ [0, 1]. We show that f is constant. For this, we suppose
f is entire non constant, we will achieve a contradiction. The idea is to prove that |f(z)|
is bounded for |z| > R big enough, and thus bounded in C by being continuous in the
compact BR(0), thus by Liouville’s Theorem, we will obtain that f is constant.

Knowing that f is entire non constant, we now prove that f(C) must be dense in
C. Suppose not, that is, there is a point a ∈ C such that for every z ∈ C we have that
|f(z)− a| > r fixed. Now we have:∣∣∣∣ 1

f(z)− a

∣∣∣∣ =
1

|f(z)− a|
<

1

r

for every z ∈ C, thus since 1/(f(z)−a) is analytic since addition of analytic functions and
inversion of an analytic function are analytic (where they are defined), and is bounded,
by Liouville’s Theorem 1/(f(z) − a) is constant hence f(z) is constant. But this is a
contradiction with f non constant. Hence the image is dense in C.

Now, since the image of f is dense in C, for every point x ∈ [0, 1] and every ε > 0
there is zε with f(zε) ∈ Bε(x) thus there is a convergent subsequence {f(zi)}i∈N with
limit x ∈ [0, 1], that is:

lim
i∈N

f(zi) = x ⇐⇒ f

(
lim
i∈N

zi

)
= x,

since f is continuous. Now limi∈N zi cannot converge since x /∈ f(C). Thus we obtain
that when f(z) tends to [0, 1] then z ∈ C tends to infinity. Since we can tend to [0, 1]
from at least two different directions (and whose subsequences cannot intersect once
we get close enough to 0 and 1 respectively since C is Hausdorff), namely tending to 0
from the left and to 1 from the right, we have control in the modulus |f(z)| ≤ 1 when
|z| → ∞.1

This means that for R big enough, we have that if |z| > R then |f(z)| ≤ 2. Now
BR(0) is a compact bounded subspace, by f being continuous we have that f is bounded
there, say |f(z)| ≤M for |z| ≤ R. Thus |f(z)| ≤M + 2 is a bound for z ∈ C, hence by
Liouville’s Theorem we have that f is constant.

1I am not quite sure if the argument as presented here is correct. I feel that this approach can prove
the result, but I am not sure if I untangled all the nuisances. Any help on this line of reasoning would
be more than welcome.
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Problem 5

Show that the function f(t) = t/(et − 1) has a unique holomorphic extension to B1(0).
Find the first four coefficients of the power series.

Notice that f(t) is finite and well defined everywhere in B1(0) except maybe t = 0.
We compute (using l’Hôpital’s Rule):

lim
t→0

f(t) = lim
t→0

t

et − 1
= lim

t→0

1

et
= 1,

thus f is bounded in B1(0). By Problem 4, f has a unique analytic extension to a
holomorphic function on B1(0), say f̃ . Letting:

f̃(t) =
∞∑
n=0

ant
n,

we want to find a0, a1, a2, a3. We already computed a0 = limt→0 f(t) = 1. Observe
that:

et − 1 =
∞∑
n=1

tk

k!

thus the relation f̃(t) = t/(et − 1) is transformed inside B1(0) to the power series
relation (that can be treated as just giant polynomials since we are inside the radius of
convergence):

(a0 + a1t+ a2t
2 + a3t

3 + · · · )
(
t+

t2

2
+
t3

6
+
t4

24
+ · · ·

)
= t,

hence we can compute the equality coefficient by coefficient after multiplying:

a0 = 1
a0
2

+ a1 = 0 =⇒ a1 =
−1

2
a0
6

+
a1
2

+ a2 = 0 =⇒ a2 =
1

12
a0
24

+
a1
6

+
a2
2

+ a3 = 0 =⇒ a3 = 0

the coefficients we wanted.
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