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Problem 1 (p. 110)

Each of the following functions has an isolated singularity at z = 0. Determine if it is
removable (and define f(0) so that it becomes analytic), a pole (and find the singular
part) or essential (and find f({z : 0 < |z| < δ}) for arbitrarily small δ ∈ R).

1. f(z) = sin(z)/z, we compute:

lim
z→0

z
sin(z)

z
= lim

z→0
sin(z) = 0,

thus it is a removable singularity. Since moreover:

lim
z→0

sin(z)

z
= lim

z→0

cos(z)

1
= 1,

by l’Hôpital’s rule, we can define f(0) = 1.

2. f(z) = cos(z)/z, we compute:

lim
z→0

∣∣∣∣cos(z)

z

∣∣∣∣ ≤ lim
z→0

1

|z|
=∞,

thus it is a pole. Since moreover:

cos(z)

z
=

1

z

( ∞∑
k=0

(−1)kz2k

(2k)!

)
=

1

z
+

∞∑
k=1

(−1)kz2k−1

(2k)!

we found that the first term is the singular part and the second term is an analytic
function.

3. f(z) = (cos(z)− 1)/z, we compute:

lim
z→0

z
cos(z)− 1

z
= lim

z→0
cos(z)− 1 = 0,

thus it is a removable singularity. Since moreover:

lim
z→0

cos(z)− 1

z
= lim

z→0

sin(z)

1
= 0,

by l’Hôpital’s rule, we can define f(0) = 0.

4. f(z) = e1/z, since:
lim
x→0+

xe1/x =∞, lim
x→0−

xe1/x = 0,

and:
lim
x→0+

e1/x =∞, lim
x→0−

xe1/x = 0,
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we have that it is an essential singularity. Now by [1, 4.2 Great Picard Theorem
(p. 300)], since we cannot have e1/z = 0 for any z ∈ C, we have that in each
neighborhood of z = 0 the function f(z) assumes each complex number, except 0,
an infinite number of times, thus f({z : 0 < |z| < δ}) = C\{0} for arbitrarily small
δ ∈ R. Another line of argument is saying that if we want to compute f(1/z) = ez

for |z| ≥ 1/δ, no matter how small is δ, it always exists n ∈ N with n > 1/δ, and
now the set {z : ni ≤ Im(z) < 2πni} is mapped to C \ {0} via f(1/z), and since
we still cannot have e1/z = 0 for any z ∈ C, f({z : 0 < |z| < δ}) = C \ {0} for
arbitrarily small δ ∈ R.

In this particular case we may go around the Great Picard Theorem, but in the
following cases we may not be so lucky.

5. f(z) = log(z + 1)/z2, we compute:

lim
z→0

∣∣∣∣ log(z + 1)

z2

∣∣∣∣ = lim
z→0

1

|z + 1|
1

|2z|
=∞,

thus it is a pole. Since moreover:

log(z + 1)

z
=

1

z2

( ∞∑
k=1

(−1)k+1zk

k!

)
=

1

z
− 1

2
+

∞∑
k=3

(−1)k+1zk−2

k!

we found that the first term 1/z is the singular part and the sum of second and
third terms is an analytic function.

6. f(z) = z cos(1/z), since:

lim
x→0

x2 cos(1/x) = 0, lim
x→0

(ix)2 cos(1/ix) = lim
x→0

(ix)2 cosh(1/x) =∞,

we obtain that limz→0 z
2 cos(1/z) does not exist, and similarly:

lim
x→0
|x cos(1/x)| = 0, lim

x→0
|ix cos(1/ix)| = lim

x→0
|x cosh(1/x)| =∞,

thus limz→0 |z cos(1/z)| does not exist and we have that it is an essential singularity.
An alternative way of seeing this is that:

z cos(1/z) = z

( ∞∑
k=0

(−1)k

(2k)!z2k

)
= z +

∞∑
k=1

(−1)k

(2k)!z2k−1

with infinitely many negative powers of z, meaning that we cannot have a re-
movable singularity nor a pole (hence it can only be an essential singularity).
Now by [1, 4.2 Great Picard Theorem (p. 300)], we have that in each neighbor-
hood of z = 0 the function f(z) assumes each complex number, with one possible
exception, an infinite number of times. However, notice that f(z) is odd since
f(−z) = (−z) cos(−1/z) = −z cos(1/z) = −f(z). Thus if there is a ∈ C such
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that f(z) = a has only a finite number of solutions (maybe none), the equation
f(z) = −a must have (by the above theorem) an infinite number of solutions, say
{zj}j∈J . Then f(−zj) = −f(zj) = a, and we have {−zj}j∈J an infinite number of
solutions. Thus the only possible point where this may occur is a = 0. However,
note that defining xn = 1/(nπ−pi/2) for n ∈ Z we have f(xn) = xn cos(1/xn) = 0,
and taking n as big as we need, we have infinite xn ∈ {z : 0 < |z| < δ} for arbi-
trarily small δ ∈ R. This means that f({z : 0 < |z| < δ}) = C for arbitrarily small
δ ∈ R.

7. f(z) = (z2 + 1)/z(z − 1), we compute:

lim
z→0

∣∣∣∣ z2 + 1

z(z − 1)

∣∣∣∣ =∞, lim
z→1

∣∣∣∣ z2 + 1

z(z − 1)

∣∣∣∣ =∞,

thus there are poles at z = 0 and z = 1. We now decompose the function into
fractions (we will spare the reader the whole computation, once done, it is easily
verified that the following decomposition is correct):

z2 + 1

z(z − 1)
= 1 +

z + 1

z(z − 1)
= 1− 1

z
+

2

z − 1
,

hence −1/z is the singular part at z = 0 and 2/z− 1 is the singular part at z = 1.

8. f(z) = 1/(1− ez), we compute:

lim
z→0

∣∣∣∣ 1

1− ez

∣∣∣∣ =∞,

thus it is a pole. Notice that if we define g(z) = zf(z) = z/(1− ez), then:

lim
z→0

z
z

1− ez
= lim

z→0

2z

−ez
= 0,

by l’Hôpital’s rule, thus g(z) has a removable singularity at z = 0 and since:

lim
z→0

z

1− ez
= lim

z→0

1

−ez
= −1,

by l’Hôpital’s rule, we can define g(0) = −1. This means that near (but not in)
z = 0 we have f(z) = g(z)/z or by the above, the first term in the power series
expansion near z = 0 of g(z) is −1, thus −1/z is the singular part of f(z) at z = 0.

9. f(z) = z sin(1/z), since:

lim
x→0

x2 sin(1/x) = 0, lim
x→0
|(ix)2 sin(1/ix)| = lim

x→0
|(ix)2i sinh(1/x)| =∞,

we obtain that limz→0 z
2 sin(1/z) does not exist, and similarly:

lim
x→0
|x sin(1/x)| = 0, lim

x→0
|ix sin(1/ix)| = lim

x→0
|xi sinh(1/x)| =∞,
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thus limz→0 |z sin(1/z)| does not exist and we have that it is an essential singularity.
An alternative way of seeing this is that:

z sin(1/z) = z

( ∞∑
k=0

(−1)k

(2k + 1)!z2k+1

)
= 1 +

∞∑
k=1

(−1)k

(2k + 1)!z2k

with infinitely many negative powers of z, meaning that we cannot have a remov-
able singularity nor a pole (hence it can only be an essential singularity). Moreover,
[2] proves that the equation sin(z) = az has infinitely many roots for every complex
number a ∈ C, and thus by [1, Theorem 3.7 (p. 78)] we need that those solutions
cannot be contained in any circle, otherwise said, given any δ ∈ R we need the
existence of a root s with |s| > 1/δ. Applying this to the equation f(1/z) = a, we
obtain that there are solutions in every {z : 0 < |z| < δ} for arbitrarily small δ ∈ R
and every a ∈ C, that is, f({z : 0 < |z| < δ}) = C for arbitrarily small δ ∈ R.

10. f(z) = zn sin(1/z), in an analogous fashion as before:

lim
x→0

xn+1 sin(1/x) = 0, lim
x→0
|(ix)n+1 sin(1/ix)| = lim

x→0
|(ix)n+1i sinh(1/x)| =∞,

we obtain that limz→0 z
n sin(1/z) does not exist, and similarly:

lim
x→0
|xn sin(1/x)| = 0, lim

x→0
|(ix)n sin(1/ix)| = lim

x→0
|xni sinh(1/x)| =∞,

thus limz→0 |zn sin(1/z)| does not exist and we have that it is an essential singu-
larity. An alternative way of seeing this is that:

z sin(1/z) = zn

( ∞∑
k=0

(−1)k

(2k + 1)!z2k+1

)

whose simplification depends on whether n is even or odd, but in both cases has
infinitely many negative powers of z, meaning that we cannot have a removable
singularity nor a pole (hence it can only be an essential singularity).

Suppose n is even. Now by [1, 4.2 Great Picard Theorem (p. 300)], we have that in
each neighborhood of z = 0 the function f(z) assumes each complex number, with
one possible exception, an infinite number of times. However, notice that f(z) is
odd since n is even and thus f(−z) = (−z)n sin(−1/z) = −z sin(1/z) = −f(z).
Thus if there is a ∈ C such that f(z) = a has only a finite number of solutions
(maybe none), the equation f(z) = −a must have (by the above theorem) an
infinite number of solutions, say {zj}j∈J . Then f(−zj) = −f(zj) = a, and we
have {−zj}j∈J an infinite number of solutions. Thus the only possible point where
this may occur is a = 0. However, note that defining xn = 1/nπ for n ∈ Z
we have f(xn) = xn sin(1/xn) = 0, and taking n as big as we need, we have
infinite xn ∈ {z : 0 < |z| < δ} for arbitrarily small δ ∈ R. This means that
f({z : 0 < |z| < δ}) = C for arbitrarily small δ ∈ R.
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Suppose n is odd. A similar argument to the one presented in [2] justifying n = 1
can be used to prove that sin(z) = azn has infinitely many roots (using that n
is odd) for every complex number a ∈ C, and thus f({z : 0 < |z| < δ}) = C for
arbitrarily small δ ∈ R.
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Problem 4 (p. 110)

Consider f(z) = 1/z(z − 1)(z − 2), give the Laurent expansion in the cases:

1. 0 < |z| < 1, notice that the term 1/z is already in a Laurent expansion form, so
we just have to determine the corresponding to the other two. Now:

1

z − 1
=
−1

1− z
= −

∞∑
k=0

zk,

because |z| < 1. Moreover:

1

z − 2
=
−1

2

1

1− z/2
=
−1

2

∞∑
k=0

zk

2k
,

because |z/2| < 1. Then:

1

z(z − 1)(z − 2)
=

1

z

( ∞∑
k=0

zk

)
1

2

∞∑
k=0

zk

2k
=

∞∑
k=−1

(1− 2−k−2)zk.

2. 1 < |z| < 2, notice that the series for 1/z and 1/(z − 2) computed above are still
valid. However, now:

1

z − 1
=
−1

z

1

1− 1/z
=
−1

z

∞∑
k=0

1

zk
,

because |z| > 1. Then:

1

z(z − 1)(z − 2)
=

1

z

(
−1

z

∞∑
k=0

1

zk

)
−1

2

∞∑
k=0

zk

2k
= −

−2∑
k=−∞

zk −
∞∑

k=−1
2−n−2zk.

3. 2 < |z| <∞, notice that the series for 1/z and 1/(z − 1) computed above are still
valid. However, now:

1

z − 2
=

1

z

1

1− z/2
=

1

z

∞∑
k=0

2k

zk
,

because |z| > 2. Then:

1

z(z − 1)(z − 2)
=

1

z

(
−1

z

∞∑
k=0

1

zk

)
1

z

∞∑
k=0

2k

zk
=

−2∑
k=−∞

(2−n−2 − 1)zk.
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Problem 5 (p. 110)

Show that f(z) = tan(z) is analytic in C except for simple poles at zn = π/2 + nπ for
n ∈ Z, and determine the singular part. We compute:

lim
z→zn

| tan(z)| = lim
z→zn

∣∣∣∣ sin(z)

cos(z)

∣∣∣∣ =∞,

since the only points where cos(z) = 0 is precisely when z = zn for n ∈ Z, and sin(zn) = 1
for every n ∈ Z. This proves that f(z) is analytic in C except for the aforementioned
poles. Moreover:

lim
z→zn

(z − zn) tan(z) = lim
z→zn

(z − zn)
sin(z)

cos(z)
= lim

z→zn

(z − zn) cos(z) + sin(z)

−sin(z)
= −1,

by l’Hôpital’s rule and thus:

lim
z→zn

(z − zn)2 tan(z) = lim
z→zn

(z − zn) lim
z→zn

(z − zn)
sin(z)

cos(z)
= 0,

meaning that the function gn(z) = (z− zn) tan(z) has a removable singularity at z = zn
and defining gn(zn) = −1 this is an analytic function. This means that near (but not
in) z = zn we have f(z) = gn(z)/(z − zn) or by the above, the first term in the power
series expansion near z = zn of gn(z) is −1, thus −1/(z− zn) is the singular part of f(z)
at z = zn for each n ∈ Z.
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Problem 7 (p. 110)

Let f have an isolated singularity at z = a with f(z) 6= 0 as a function. Show that if
either:

lim
z→a
|z − a|s|f(z)| = 0 or lim

z→a
|z − a|s|f(z)| =∞

for some s ∈ R, then there is an integer m ∈ Z such that:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > m,

∞ if t < m.

We will do this in two parts:

1. Suppose limz→a |z − a|s|f(z)| = 0, that is, limz→a (z − a)sf(z) = 0, for some s ∈ R.
Then there is some n ∈ N+ with limz→a (z − a)nf(z) = 0 and limz→a (z − a)n+1f(z) =
0 (simply take n > s). This means that (z − a)nf(z) has a removable singularity
at z = a and we can extend it by defining 0 as the value at z = a. Then by [1,
Corollary 3.9 (p. 79)] the function (z−a)nf(z) has a zero of finite order, say k ∈ N,
at z = a and:

(z − a)nf(z) = (z − a)kh(z) with h(a) 6= 0,

and h being analytic. Thus computing:

lim
z→a

(z − a)tf(z) = lim
z→a

(z − a)t−n+kh(z) =


0 if t > n− k,
±∞ if t < n− k,
h(a) 6= 0 if t = n− k.

Thus taking m = n−k ∈ Z is enough to prove what we wanted. Note that although
not explicitly needed right now, when t = m we obtain that the limit is non zero.
This will be used in the next exercises with key effect.

2. Suppose limz→a |z − a|s|f(z)| =∞. Then there is some n ∈ N+ with limz→a |z − a|n|f(z)| =
∞ (simply take n < s). This means that (z − a)nf(z) has a pole at z = a, say of
order l ∈ N. Then by [1, Proposition 1.4 (p. 105)] we can write:

(z − a)nf(z) = h(z)/(z − a)l with h(a) 6= 0,

and h being analytic. Thus computing:

lim
z→a

(z − a)tf(z) = lim
z→a

(z − a)t−n−lh(z) =


0 if t > n+ l,

±∞ if t < n+ l,

h(a) 6= 0 if t = n+ l.

Thus taking m = n+l ∈ Z is enough to prove what we wanted. Note that although
not explicitly needed right now, when t = m we obtain that the limit is non zero.
This will be used in the next exercises with key effect.
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Problem 8 (p. 110)

Let f , a and m as in the exercise above. Show:

1. m = 0 if and only if z = a is a removable singularity and f(a) 6= 0.

⇒) Suppose we have:

lim
z→a
|z − a|s|f(z)| =

{
0 if s > 0,

6= 0 if s = 0.
=⇒

{
limz→a (z − a)f(z) = 0 since s = 1,

limz→a f(z) 6= 0 since s = 0.

Hence by [1, Theorem 1.2 (p. 103)] we have a removable singularity and we can
define f(a) 6= 0 to make it analytic.

⇐) Suppose we have limz→a (z − a)f(z) = 0, then by Exercise 7 above there is
m ∈ Z with:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > m,

∞ if t < m.

but since we have:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > 0,

6= 0 if t = 0.

the only option is m = 0, as desired.

2. m < 0 if and only if z = a is a removable singularity and f has a zero of order −m
at z = a.

⇒) The condition that we know is that for m < 0 we have according to Exercise
7 above:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > m,

∞ if t < m.
=⇒

{
limz→a (z − a)f(z) = 0 since s = 1,

limz→a f(z) 6= 0 since s = 0.

Hence by [1, Theorem 1.2 (p. 103)] we have a removable singularity and we can
define f(a) = 0 to make it analytic. Moreover, we have that:{

limz→a (z − a)(z − a)mf(z)f(z) = 0 since s = m+ 1,

limz→a (z − a)mf(z) 6= 0 since s = m,

This means that (z − a)−mf(z) has a removable singularity at z = a (with −m
being the smallest since limz→a (z − a)(z − a)m−1f(z) 6= 0), therefore f has a pole
of order −m at z = a, as desired.

⇐) Let f have a removable singularity at z = a of order −m, that is, we can write
f(z) = (z − a)−mg(z) with g(z) analytic, g(a) 6= 0. Hence we obtain as desired:

lim
z→a

(z − a)tf(z) = lim
z→a

(z − a)t−mg(z) =


0 if t > m,

±∞ if t < m,

g(a) 6= 0 if t = m.
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3. m > 0 if and only if z = a is a pole of f of order −m.

⇒) The condition that we know is that for m > 0 we have according to Exercise
7 above:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > m,

∞ if t < m.
=⇒


limz→a (z − a)(z − a)mf(z) = 0 since s = m+ 1,

limz→a (z − a)mf(z) 6= 0 since s = m,

limz→a (z − a)m−1f(z) = ±∞ since s = m− 1.

Hence m is the smallest such that (z − a)mf(z) has a removable singularity at
z = a, thus f has a pole of order m, as desired.

⇐) If f has a pole of order m at z = a we can write h(z) = (z − a)mf(z) an
analytic function (it may have a removable singularity at z = a, we just have to
define h(a) properly). Then we obtain as desired:

lim
z→a
|z − a|t|f(z)| = lim

z→a
|z − a|t−m|h(z)| =


0 if t > m,

∞ if t < m,

|h(a)| 6= 0 if t = m.
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Problem 9 (p. 110)

Prove that a function f has an essential singularity at z = a if and only if neither
limz→a |z − a|s|f(z)| = 0 nor limz→a |z − a|s|f(z)| =∞ hold for any real number s ∈ R.
We will prove both directions by contrapositive.
⇒) If f is such that either limz→a |z − a|s|f(z)| = 0 or limz→a |z − a|s|f(z)| = ∞

hold for certain real number s ∈ R, then there exists m ∈ Z with:

lim
z→a
|z − a|t|f(z)| =


0 if t > m,

∞ if t < m,

6= 0 if t = m,

by Exercise 7. Then by Exercise 8 we conclude that the only options are that z = a is
a removable singularity or a pole, meaning that it can never be an essential singularity.
⇐) Assume f has a removable or a pole at z = a. Then by Exercise 8 there exists

an m ∈ Z such that:

lim
z→a
|z − a|t|f(z)| =

{
0 if t > m,

∞ if t < m,

as desired.
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Problem 12 (p. 111)

For this exercise, we will use [1, 1.11 Laurent Series Development (p. 107)] to compute
what we are asked.

1. Let λ ∈ C, show that:

exp(λ(z + 1/z)/2) = a0 +

∞∑
n=1

an(zn + 1/zn)

for 0 < |z| <∞ with an =
∫ π
0 e

λ cos(nt) cos(nt)/πdt for n ≥ 0. Using that exp(λ(z+
1/z)/2) is analytic for 0 < |z| < ∞, integrating over z = eit (and dz = ieitdt) for
−π ≤ t ≤ π (notice that eit + e−it = 2 cos(t) and e−int = cos(nt)− i sin(nt)) hence
we have that:

an =
1

2πi

∫ π

−π

eλ cos(t)

e(n+1)it
ieitdt =

1

2π

∫ π

−π

eλ cos(t)

enit
dt

=
1

2π

∫ π

−π
eλ cos(t) cos(nt)dt− 1

2π

∫ π

−π
eλ cos(t) sin(nt)dt

=
1

π

∫ π

0
eλ cos(t) cos(nt)dt

where the last step is justified because for all n ∈ Z we have that cos(nt) is even
and sin(nt) is odd (in the variable t), thus by symmetry the positive and negative
parts of the first integral are the same (hence we can multiply by two first integral
and just integrate the positive part), and by symmetry the positive and negative
parts of the first integral are the same in value but with different signs, thus it
amounts to zero. Moreover, by this symmetry argument, we have that an = a−n,
thus the sum can be reorganized as we are asked and the final result is precisely
what we wanted.

2. Let λ ∈ C, show that:

exp(λ(z − 1/z)/2) = b0 +

∞∑
n=1

bn(zn + (−1)n/zn)

for 0 < |z| < ∞ with bn =
∫ π
0 cos(nt− λ sin(nt))/πdt for n ≥ 0. Using that

exp(λ(z − 1/z)/2) is analytic for 0 < |z| < ∞, integrating over z = eit (and
dz = ieitdt) for −π ≤ t ≤ π (notice that eit − e−it = −2i sin(t) and e−int =
cos(nt)− i sin(nt)) hence we have that:

bn =
1

2πi

∫ π

−π

eλi sin(t)

e(n+1)it
ieitdt =

1

2π

∫ π

−π

eλi sin(t)

enit
dt

=
1

2π

∫ π

−π
eλi sin(t)(cos(nt)− i sin(nt))dt,
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now using that eλi sin(t) = cos(λ sin(t)) + i sin(λ sin(t)), we can multiply:

[cos(λ sin(t)) + i sin(λ sin(t))][cos(nt)− i sin(nt)] = cos(nt)sin(λ sin(t))

+ sin(nt) sin(λ sin(t)) + i sin(λ sin(t)) cos(nt) + i cos(λ sin(t)) sin(nt)

= cos(nt− λ sin(t)) + i sin(nt+ λ sin(t)),

where the first term is even and the second is odd (again in the variable t). Thus:

bn =
1

2π

∫ π

−π
cos(nt− λ sin(t))dt+

1

2π

∫ π

−π
sin(nt− λ sin(t))dt

=
1

π

∫ π

0
cos(nt− λ sin(t))dt,

since the first term being even means we can again multiply by two and only
integrate the positive part, and the second term being odd means the integral
amounts to zero. This is the integral we wanted, we now only need to prove that
b−n = (−1)nbn. For this, notice that:

f(−1/z) = exp

(
λ

2

(
−1

z
− −1

1/z

))
= exp

(
λ

2

(
z − 1

z

))
= f(z),

then expanding this equality in the power series:

∞∑
n=−∞

b−n(−1)−nzn =
∞∑

n=−∞
bn(−1)nz−n = f(−1/z) = f(z) =

∞∑
n=−∞

bnz
n.

This means that equalizing the terms of the same power we directly obtain the
desired b−n = (−1)nbn, proving the result.
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Problem 13 (p. 111)

Let R > 0 and G = {z : |z| > R}, a function f : G −→ C is said to have a removable
singularity, a pole or an essential singularity at infinity if f(z−1) has a removable singu-
larity, a pole or an essential singularity at z = 0. If f has a pole at infinity, the order of
the pole is said to be the order of the pole of f(z−1) at z = 0.

1. Prove that an entire function has a removable singularity at infinity if and only if
it is a constant.

⇐) Let f(z) = a ∈ C, then f(z−1) = a hence limz→0 zf(z−1) = 0 meaning that
f(z−1) has a removable singularity at z = 0 hence f has a removable singularity
at infinity.

⇒) Let f have a removable singularity at infinity, that is f(z−1) has a removable
singularity at z = 0. This means that defining g(0) accordingly we have f(z−1)) =
g(z) an analytic function outside z = 0, hence:

lim
z→∞

f(z) = lim
z→0

f(z−1) = g(0) ∈ C

hence f is bounded: we have that fixed M ∈ R, we have |f(z) − g(0)| < M for
|z| ≥ R since f is continuous in B(0, R) compact, thus f(z) ≤ max{M, g(0)} is
bounded, and by Liouville’s Theorem it is constant.

2. Prove that an entire function has a pole at infinity of order m if and only if it is a
polynomial of degree m.

⇐) Let f(z) = amm + · · · + a0, then f(z−1) = am/z
m + · · · + a0, thus by [1,

Corollary 1.18 (p. 109)] we have that f(z−1) has a pole of order m at z = 0 and
thus f(z) has a pole of order m at infinity.

⇒) Let f have a pole of order m at infinity, then f(z−1) has a pole of order m
at z = 0. Thus by [1, Corollary 1.18 (p. 109)] we have that f(z−1) = b−m/z

m +
· · · + b−1/z + g(z) with g(z) analytic. However, since f(z) is analytic, we must
have that f(z−1) =

∑∞
k=0 ak/z

k. Comparing term by term, we see that there
cannot be terms 1/zn for n > m and that g(z) = g(0) = a0 thus we must have
f(z) = amz

m + · · ·+ a0, a polynomial of degree m.

3. Characterize those rational functions which have a removable singularity at infinity.
We will work with fractions of polynomials r(z) = p(z)/q(z) with p(z) = pkz

k +
· · ·+p0 and q(z) = qlz

l+· · ·+q0. Now r(z) has a removable singularity at infinity if
and only if r(z−1) has a removable singularity at z = 0, that is, limz→0 zr(z

−1) = 0.
Now:

lim
z→0

zr(z−1) = lim
z→0

z
pk/z

k + · · ·+ p1/z + p0
ql/zl + · · ·+ q1/z + q0

,

and since z → 0 means 1/z → ∞, the dominant terms are the ones of highest
degree (in absolute value). Hence this limit is zero if and only if:

lim
z→0

zpk/z
k

ql/zl
= lim

z→0

pk
ql

zzl

zk
= 0 ⇐⇒ l + 1 > k ⇐⇒ l ≥ k

15



since both l, k ∈ N. That is, a rational function has a removable singularity at
infinity if and only if the numerator has degree less or equal to the denominator’s
degree.

4. Characterize those rational functions which have a pole of order m at infinity. We
will work with fractions of polynomials r(z) = p(z)/q(z) with p(z) = pkz

k+ · · ·+p0
and q(z) = qlz

l + · · ·+ q0. Now r(z) has a pole at infinity of order m if and only if
r(z−1) has a pole at infinity of order m, that is (by [1, Corollary 1.18 (p. 109)]):

r(z−1) =
a−m
zm

+ · · ·+ a−1
z

+

∞∑
n=0

anz
n,

which happens if and only if r(z−1) behaves like a−m/z
m when z → 0 because,

as before, z → 0 means 1/z → ∞ and the dominant term is the one of degree m.
Hence we need:

pk/z
k

ql/zl
∼ a−m

zm
⇐⇒ zl

zk
∼ 1

zm
⇐⇒ s− k = −k ⇐⇒ s+m = k.

That is, a rational function has a pole of order m at infinity if and only if the
numerator has degree exactly m greater than the denominator’s degree.
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