Differential Geometry I - Midterm

Pablo Sánchez Ocal
April 3rd, 2017

Exercise 3

1. Let M be an n-dimensional manifold equipped with a nowhere vanishing n-form $w \in \Omega^{n}(M)$. If X is a vector field on M, show that there is a unique scalar field F so that $L_{X} w=F w$.
We will write $w=g d x^{1} \wedge \cdots \wedge d x^{n}$ the general expression of a form $w \in \Omega^{n}(M)$, where $g: M \longrightarrow \mathbb{R}$ is a smooth function. We will write $X=\sum_{i=1}^{n} f^{i} \frac{\partial}{\partial x^{i}}$ the general expression of a vector field on M. We want to compute $L_{X} w$, and for this we note that $d w=0$, for any given coordinate we have $\iota_{X}\left(d x^{i}\right)=d x^{i}(X)=f^{i}$ (by the definition of $\iota_{X}(\eta)$ as letting η act on X on the first component, which is the only component in the 1 -forms) and $\iota_{X}(w)=g \iota_{X}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)$. Moreover, we have that:

$$
\begin{aligned}
\iota_{X}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right) & =\left(\iota_{X}\left(d x^{1}\right)\right) \wedge d x^{2} \wedge \cdots \wedge d x^{n}-d x^{1} \wedge\left(\iota_{X}\left(d x^{2} \wedge \cdots \wedge d x^{n}\right)\right) \\
& =f^{1} d x^{2} \wedge \cdots \wedge d x^{n}-\left(f^{2} d x^{1} \wedge d x^{3} \wedge \cdots \wedge d x^{n}\right) \\
& +d x^{1} \wedge d x^{2}\left(\iota_{X}\left(d x^{3} \wedge \cdots \wedge d x^{n}\right)\right)=\cdots \\
& =\sum_{i=1}^{n}(-1)^{i-1} f^{i} d x^{1} \wedge \cdots \wedge \hat{x^{i}} \wedge \cdots \wedge d x^{n}
\end{aligned}
$$

Finally, when we add all the above together:

$$
\begin{aligned}
L_{X} w & =\iota_{X}(d w)+d\left(\iota_{X}(w)\right)=d\left(g \iota_{X}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} d\left(g f^{i}\right) d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial\left(g f^{i}\right)}{\partial x^{i}} d x^{i} \wedge d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n} \\
& =\sum_{i=1}^{n} \frac{\partial\left(g f^{i}\right)}{\partial x^{i}} d x^{1} \wedge \cdots \wedge d x^{n}=\frac{1}{g} \sum_{i=1}^{n} \frac{\partial\left(g f^{i}\right)}{\partial x^{i}} g d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\frac{1}{g} \sum_{i=1}^{n} \frac{\partial\left(g f^{i}\right)}{\partial x^{i}} w \Longrightarrow F=\frac{1}{g} \sum_{i=1}^{n} \frac{\partial\left(g f^{i}\right)}{\partial x^{i}}
\end{aligned}
$$

obtaining the vector field F we desired.
2. Show that for $M=\mathbb{R}^{3}$ and $w=d x \wedge d y \wedge d z$, the scalar field found above agrees with the divergence of X, where X with components X^{x}, X^{y} and X^{z} then $\operatorname{div}(X)=$ $\frac{\partial X^{x}}{\partial x}+\frac{\partial X^{y}}{\partial y}+\frac{\partial X^{z}}{\partial z}$.
Note that in this case we have $n=3$ and $x^{1}=x, x^{2}=y, x^{3}=z$ with $f^{1}=X^{x}$, $f^{2}=X^{y}, f^{3}=X^{z}$ and $g=1$. That means:

$$
F=\frac{1}{1} \sum_{i=1}^{3} \frac{\partial\left(1 \cdot f^{i}\right)}{\partial x^{i}}=\frac{\partial X^{x}}{\partial x}+\frac{\partial X^{y}}{\partial y}+\frac{\partial X^{z}}{\partial z}=\operatorname{div}(X)
$$

as desired.
3. Find an expression for the scalar field found above for a vector field $X=X^{r} \frac{\partial X^{r}}{\partial r}+$ $X^{\theta} \frac{\partial X^{\theta}}{\partial \theta}$ on $\mathbb{R}^{2} \backslash\{0\}$ equipped with $w=r d r \wedge \theta$.
In this case we have $n=2$ and $x^{1}=r, x^{2}=\theta$ with $f^{1}=X^{r}, f^{2}=X^{\theta}$ and $g=r$. That means:

$$
F=\frac{1}{r} \sum_{i=1}^{2} \frac{\partial\left(r \cdot f^{i}\right)}{\partial x^{i}}=\frac{1}{r}\left(X^{r}+r \frac{\partial X^{r}}{\partial r}+\frac{\partial r}{\partial \theta} X^{\theta}+r \frac{\partial X^{\theta}}{\partial \theta}\right)=\frac{X^{r}}{r}+\frac{\partial X^{r}}{\partial r}+\frac{\partial X^{\theta}}{\partial \theta}
$$

because $\partial r / \partial \theta=0$. This is the expression we desired.

