Differential Geometry I - Homework 1

Pablo Sánchez Ocal
January 30th, 2017

Exercise 2

We consider S^{n} with the smooth structure given by the stereographic projections P_{N} and P_{S} (N being the north pole and S the south pole). In particular, the problem implicitly tells us that the stereographic projections are \mathcal{C}^{∞} related. We want to show that the following charts are \mathcal{C}^{∞} related to the stereographic projections:

$$
\begin{array}{cccc}
f: S^{n} \cap\left\{x \in \mathbb{R}^{n+1}: x^{i}>0\right\} & \longrightarrow & \mathbb{R}^{n} \\
\left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto & \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right), \\
g: S^{n} \cap\left\{x \in \mathbb{R}^{n+1}: x^{i}<0\right\} & \longrightarrow & \mathbb{R}^{n} \\
\left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto & \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right) .
\end{array}
$$

In virtue of the above, it is enough to prove that f_{i} is related to P_{S} and g_{i} is related to P_{N}. To do this, we find an explicit expression for the stereographic projections, their inverses and the inverses of the two functions above.

Starting with P_{N}, we consider the vector joining the north pole N with $\left(x_{1}, \ldots, x_{n+1}\right)$ a generic point in $S^{n} \backslash\{N\}$, that is, $\vec{v}=\left(x_{1}, \ldots, x_{n}, x_{n+1}-1\right)$. Now we add this to the north pole enough times so that we land in the plane $x_{n+1}=0$, that is, we want $k \in \mathbb{R}$ such that $1+k\left(x_{n+1}-1\right)=0$, otherwise said $k=1 / 1-x_{n+1}$. Hence:

$$
\begin{array}{cccc}
P_{N}: & S^{n} \backslash\{N\} & \longrightarrow & \mathbb{R}^{n} \\
\left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto & \longmapsto\left(\frac{x_{1}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}\right) .
\end{array}
$$

To find the inverse P_{N}^{-1}, we let $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ and $\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n} \backslash\{N\}$ be our coordinates and we have to consider the system of equations given by:

$$
X_{1}=\frac{x_{1}}{1-x_{n+1}}, \ldots, X_{n}=\frac{x_{n}}{1-x_{n+1}}, x_{1}^{2}+\cdots+x_{n+1}^{2}=1,
$$

that is:
$x_{1}=X_{1}\left(1-x_{n+1}\right), \ldots, x_{n}=X_{n}\left(1-x_{n+1}\right),\left(X_{1}\left(1-x_{n+1}\right)\right)^{2}+\cdots+\left(X_{n}\left(1-x_{n+1}\right)\right)^{2}+x_{n+1}^{2}=1$
hence there are two solutions for x_{n+1} :

$$
x_{n+1}=-1 \text { and thus } x_{1}=\cdots=x_{n}=0 \text { or } x_{n+1}=\frac{X_{1}^{2}+\cdots+X_{n}^{2}-1}{X_{1}^{2}+\cdots+X_{n}^{2}+1}
$$

resulting in:

$$
\begin{array}{rlcc}
P_{N}^{-1}: & \mathbb{R}^{n} & \longrightarrow & S^{n} \backslash\{N\} \\
& \left(X_{1}, \ldots, X_{n}\right) & \longmapsto & \longmapsto\left(\frac{2 X_{1}}{X_{1}^{2}+\cdots+X_{n}^{2}+1}, \ldots, \frac{2 X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}+1}, \frac{X_{1}^{2}+\cdots+X_{n}^{2}-1}{X_{1}^{2}+\cdots+X_{n}^{2}+1}\right) .
\end{array}
$$

Notice how component wise, the function is \mathcal{C}^{∞}.
Continuing with P_{S}, we consider the vector joining the south pole S with $\left(x_{1}, \ldots, x_{n+1}\right)$ a generic point in $S^{n} \backslash\{S\}$, that is, $\vec{v}=\left(x_{1}, \ldots, x_{n}, x_{n+1}+1\right)$. Now we add this to the
north pole enough times so that we land in the plane $x_{n+1}=0$, that is, we want $k \in \mathbb{R}$ such that $-1+k\left(x_{n+1}+1\right)=0$, otherwise said $k=1 / 1+x_{n+1}$. Hence:

$$
\begin{array}{cccc}
P_{S}: & S^{n} \backslash\{S\} & \longrightarrow & \mathbb{R}^{n} \\
& \left(x_{1}, \ldots, x_{n+1}\right) & \longmapsto & \left(\frac{x_{1}}{1+x_{n+1}}, \ldots, \frac{x_{n}}{1+x_{n+1}}\right) .
\end{array}
$$

To find the inverse P_{S}^{-1}, we let $\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ and $\left(x_{1}, \ldots, x_{n+1}\right) \in S^{n} \backslash\{N\}$ be our coordinates and we have to consider the system of equations given by:

$$
X_{1}=\frac{x_{1}}{1+x_{n+1}}, \ldots, X_{n}=\frac{x_{n}}{1+x_{n+1}}, x_{1}^{2}+\cdots+x_{n+1}^{2}=1
$$

that is:
$x_{1}=X_{1}\left(1+x_{n+1}\right), \ldots, x_{n}=X_{n}\left(1+x_{n+1}\right),\left(X_{1}\left(1+x_{n+1}\right)\right)^{2}+\cdots+\left(X_{n}\left(1+x_{n+1}\right)\right)^{2}+x_{n+1}^{2}=1$
hence there are two solutions for x_{n+1} :

$$
x_{n+1}=1 \text { and thus } x_{1}=\cdots=x_{n}=0 \text { or } x_{n+1}=-\frac{X_{1}^{2}+\cdots+X_{n}^{2}-1}{X_{1}^{2}+\cdots+X_{n}^{2}+1}
$$

resulting in:

$$
\begin{array}{cccc}
P_{S}^{-1}: & \mathbb{R}^{n} & \longrightarrow & S^{n} \backslash\{S\} \\
& \left(X_{1}, \ldots, X_{n}\right) & \longmapsto & \left(\frac{2 X_{1}}{X_{1}^{2}+\cdots+X_{n}^{2}+1}, \ldots, \frac{2 X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}+1},-\frac{X_{1}^{2}+\cdots+X_{n}^{2}-1}{X_{1}^{2}+\cdots+X_{n}^{2}+1}\right) .
\end{array}
$$

Notice how component wise, the function is \mathcal{C}^{∞}.
Finally, a computation of the inverses f_{j}^{-1} and g_{j}^{-1} is obtained from imposing that the norm of the coordinates is one, hence all the components are the identity except the j-th one (note how \hat{X}_{j} denotes that there is no X_{j} component in \mathbb{R}^{n}):

$$
\left.\begin{array}{cccc}
f_{j}^{-1} & : & \mathbb{R}^{n} & \longrightarrow
\end{array} \begin{array}{c}
S^{n} \cap\left\{x \in \mathbb{R}^{n+1}: x^{i}>0\right\} \\
\\
\\
\\
\left(X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}\right)
\end{array}\right) \longmapsto\left(X_{1}, \ldots, \sqrt{1-X_{1}^{2}-\cdots-X_{n}^{2}}, \ldots, X_{n}\right),
$$

Again, notice how in the square root the term X_{j}^{2} is not included in the subtraction. Moreover, notice how component wise in their domain, the functions are \mathcal{C}^{∞}. It is important to mention that we need here to restrict to the domain, since the assignment $\left(X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}\right) \longmapsto \sqrt{1-X_{1}^{2}-\cdots-X_{n}^{2}}$ is $\operatorname{not} \mathcal{C}^{\infty}$ in general: if $1=X_{1}^{2}+\cdots+X_{n}^{2}$ this is not continuously differentiable. However, since we must land in $S^{n} \cap\left\{x \in \mathbb{R}^{n+1}\right.$: $\left.x^{i}>0\right\}$ or $S^{n} \cap\left\{x \in \mathbb{R}^{n+1}: x^{i}<0\right\}$, we have that $X_{1}^{2}+\cdots+X_{n}^{2}>0$, resolving this issue.

Now we have that all the compositions $f_{j} \circ P_{S}^{-1}, g_{j} \circ P_{N}^{-1}, P_{S} \circ f_{j}^{-1}$ and $P_{N} \circ g_{j}^{-1}$ are component wise \mathcal{C}^{∞} since over the real numbers the composition of \mathcal{C}^{∞} functions is \mathcal{C}^{∞}, as desired. We will have to restrict us to the case of \mathcal{C}^{∞} functions over the reals multiple times in the following.

Exercise 3

1. Prove that all \mathcal{C}^{∞} functions are continuous, and that the composition of \mathcal{C}^{∞} functions is \mathcal{C}^{∞}.

For the first part, given $f: M \longrightarrow N$ a \mathcal{C}^{∞} function between manifolds, we want to check that it is continuous. Let $V \subset N$ be an open set. Since we have a maximal atlas in N that gives the notion of smoothness, and the charts in such atlas cover N and are compatible, we can find a homeomorphism y such that (y, V) belongs to the atlas in N. Now, we know that by definition, for any chart (x, U) of M we have that $y \circ f \circ x^{-1}: x(U) \longrightarrow y(V)$ is a real valued \mathcal{C}^{∞} function, hence it is continuous. Moreover, since x and y are diffeomorphisms in their respective smooth structures, they are homeomorphisms hence continuous with continuous inverse. Since the composition of continuous functions between topological spaces are continuous, we obtain that $f=y^{-1} \circ\left(y \circ f \circ x^{-1}\right) \circ x: f^{-1}(V) \longrightarrow V$ is a continuous function. In particular, for every $V \subset N$ open, we have that $f^{-1}(V)$ is open, which is the definition of $f: M \longrightarrow N$ being continuous, as desired.
For the second part, let $f: M \longrightarrow N$ and $g: N \longrightarrow T$ be \mathcal{C}^{∞} functions. Let $(x, U),(y, V),(z, W)$ be any charts in M, N, T respectively. Then:

$$
x \circ(g \circ f) \circ z^{-1}=\left(x \circ g \circ y^{-1}\right) \circ\left(y \circ g \circ z^{-1}\right): z(W) \longrightarrow y(V) \longrightarrow x(U)
$$

which is a \mathcal{C}^{∞} function in the real numbers since is is a composition of two \mathcal{C}^{∞} functions in the real numbers, in virtue of the definition of f and g being \mathcal{C}^{∞} functions between manifolds. Hence, this means precisely that $g \circ f: M \longrightarrow T$ is a \mathcal{C}^{∞} function between manifolds, as desired.
2. Prove that a function $f: M \longrightarrow N$ is \mathcal{C}^{∞} if and only if $g \circ f: M \longrightarrow \mathbb{R}$ is \mathcal{C}^{∞} for every $g: N \longrightarrow \mathbb{R}$ that is \mathcal{C}^{∞}.
$\Rightarrow)$ Let $f: M \longrightarrow N$ and $g: N \longrightarrow \mathbb{R}$ be \mathcal{C}^{∞} functions. By the above, we know that the composition of \mathcal{C}^{∞} functions is a \mathcal{C}^{∞} function, hence $g \circ f: M \longrightarrow \mathbb{R}$ is a \mathcal{C}^{∞} function.
$\Leftarrow)$ Let $x, U,(y, V)$ be any charts on M, N respectively. Denoting by $y_{i}: N \longrightarrow \mathbb{R}$ the i-th component of y, we obtain by hypothesis that $y_{i} \circ f: M \longrightarrow \mathbb{R}$ is a \mathcal{C}^{∞} function. Moreover, since x^{-1} is a \mathcal{C}^{∞} function because x being a chart in particular means that it is a diffeomorphism, by the point above we obtain that $y_{i} \circ f \circ x^{-1}: x(U) \longrightarrow y_{i}(V)$ is a real valued \mathcal{C}^{∞} function. Hence the function $y \circ f \circ x^{-1}: x(U) \longrightarrow y(V)$ is real valued and \mathcal{C}^{∞} component wise, meaning that it is \mathcal{C}^{∞} as a real valued function. This is precisely the definition of $f: M \longrightarrow N$ being a \mathcal{C}^{∞} function between manifolds.

Exercise 4

Let a function $f: \mathbb{H}^{n} \longrightarrow \mathbb{R}$ have two \mathcal{C}^{∞} extensions g and h defined on a neighborhood of \mathbb{H}^{n}. Prove that $\partial_{j} g$ coincides with $\partial_{j} h$ on $\mathbb{R}^{n-1} \times\{0\}$.

First, recall that g and h being extensions of f means that $g\left(\mathbb{H}^{n}\right)=f\left(\mathbb{H}^{n}\right)=h\left(\mathbb{H}^{n}\right)$. Now, applying the definition of a partial derivative for $1 \leq j \leq n-1$, we obtain that:

$$
\begin{aligned}
\partial_{j} g\left(x_{1}, \ldots, x_{n-1}, 0\right) & =\lim _{x \rightarrow 0} \frac{g\left(x_{1}, \ldots, x_{j}+x, \ldots, x_{n-1}, 0\right)-g\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\lim _{x \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{j}+x, \ldots, x_{n-1}, 0\right)-f\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\lim _{x \rightarrow 0} \frac{h\left(x_{1}, \ldots, x_{j}+x, \ldots, x_{n-1}, 0\right)-h\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\partial_{j} h\left(x_{1}, \ldots, x_{n-1}, 0\right),
\end{aligned}
$$

since both $\left(x_{1}, \ldots, x_{j}+x, \ldots, x_{n-1}, 0\right),\left(x_{1}, \ldots, x_{n-1}, 0\right) \in \mathbb{H}^{n}$. Notice that for the last component, since we assume that g and h are \mathcal{C}^{∞}, the limit that we want to compute is well defined, hence it doesn't matter how we make $x \in \mathbb{R}$ go to 0 because all of the ways will coincide. Hence we can apply the above for the case $x>0, j=n$ and obtain:

$$
\begin{aligned}
\partial_{n} g\left(x_{1}, \ldots, x_{n-1}, 0\right) & =\lim _{x \rightarrow 0} \frac{g\left(x_{1}, \ldots, x_{n-1}, x\right)-g\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\lim _{x \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{n-1}, x\right)-f\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\lim _{x \rightarrow 0} \frac{h\left(x_{1}, \ldots, x_{n-1}, x\right)-h\left(x_{1}, \ldots, x_{n-1}, 0\right)}{x} \\
& =\partial_{n} h\left(x_{1}, \ldots, x_{n-1}, 0\right),
\end{aligned}
$$

since again $\left(x_{1}, \ldots, x_{n-1}, x\right),\left(x_{1}, \ldots, x_{n-1}, 0\right) \in \mathbb{H}^{n}$ because of the choice for x. This proves the desired result.

Exercise 5

Consider two smooth structures over \mathbb{R}, the first \mathcal{U} being the maximal atlas containing the identity and the second \mathcal{V} the maximal atlas containing taking the third power.

1. Show that the homeomorphisms ϕ_{0} and ϕ_{1} are not \mathcal{C}^{∞} related. For this, note that $\phi_{1}^{-1}(x)=\sqrt[3]{x}$, hence:
is a function that is not \mathcal{C}^{∞} (it is not even \mathcal{C}^{1}, the derivative is not continuous), hence ϕ_{0} and ϕ_{1} are not \mathcal{C}^{∞} related.
2. Equip $M=\mathbb{R}$ with \mathcal{U} and $N=\mathbb{R}$ with \mathcal{V}, consider:

$$
\begin{aligned}
f: \begin{array}{clllllll}
M & \longrightarrow & N \\
x & \longmapsto & x
\end{array} \text { and } \begin{array}{llll}
g & : & & \\
& & & \\
x & \longmapsto & x
\end{array}
\end{aligned}
$$

we want to find which of these maps is smooth. Notice that g is not smooth since for the defining charts ϕ_{0} of \mathcal{U} and ϕ_{1} of \mathcal{V} we have:

$$
\begin{aligned}
\phi_{0} \circ g \circ \phi_{1}^{-1}: \mathbb{R} & \longrightarrow \mathbb{R} \\
& x
\end{aligned} \longmapsto \sqrt[3]{x}
$$

which, as stated above, is not \mathcal{C}^{∞}. For f, we can apply the same charts and find that:

$$
\begin{array}{rlll}
\phi_{1} \circ f \circ \phi_{0}^{-1} & : \mathbb{R} & \longrightarrow \mathbb{R} \\
& x & \longmapsto x
\end{array}
$$

which is indeed \mathcal{C}^{∞}. Now consider any charts x in M and y in N. Their defining property is that they are \mathcal{C}^{∞} related to ϕ_{0} and ϕ_{1} respectively, in particular, $\phi_{0} \circ x^{-1}$ is \mathcal{C}^{∞} and $y \circ \phi_{1}^{-1}$ is \mathcal{C}^{∞}. Now:

$$
y \circ f \circ x^{-1}=\left(y \circ \phi_{1}^{-1}\right) \circ\left(\phi_{1} \circ f \circ \phi_{0}^{-1}\right) \circ\left(\phi_{0} \circ x^{-1}\right)
$$

is a real valued \mathcal{C}^{∞} function since it is the composition of three real valued \mathcal{C}^{∞} functions. Since we proved this for any charts, this is precisely the definition of $f: M \longrightarrow N$ being \mathcal{C}^{∞} between manifolds.
3. Show that a function $h: N \longrightarrow \mathbb{R}$ is smooth at $x=0$ if and only if the Taylor series of h at 0 contains only terms of the form $x^{3 k}$ with $k \in \mathbb{N}$.
$\Rightarrow)$ Let $h: N \longrightarrow \mathbb{R}$ be smooth at $x=0$. This in particular means that:

$$
\begin{array}{rlccc}
\phi_{0} \circ h \circ \phi_{1}^{-1} & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \longmapsto & h(\sqrt[3]{x})
\end{array}
$$

is smooth. Since $h: \mathbb{R} \longrightarrow \mathbb{R}$, we have the usual form for its Taylor series:

$$
h(x)=\sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} x^{n} \text { hence } h(\sqrt[3]{x})=\sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} \sqrt[3]{x^{n}} .
$$

Notice that since this is a Taylor series, it converges at $x=0$ and thus we may find the derivative at $x=0$ by differentiating inside the sum. However checking element wise, $\sqrt[3]{x^{n}}$ is \mathcal{C}^{∞} when $n=3 k$ for $k \in \mathbb{N}$, but in the rest of the cases we find that $\sqrt[3]{x^{n}}$ differentiated $n \bmod 3$ times is no longer \mathcal{C}^{1}, hence $\sqrt[3]{x^{n}}$ is not \mathcal{C}^{∞}. Thus, for h to be smooth, we need to only have the terms of the form $x^{3 k}$ for $k \in \mathbb{N}$ in the Taylor expansion.
$\Leftarrow)$ Suppose $h: N \longrightarrow \mathbb{R}$ has as a Taylor expansion near $x=0$:

$$
h(x)=\sum_{n=0}^{\infty} h_{n} x^{3 n} .
$$

Then near $x=0$ we have:

$$
\phi_{0} \circ h \circ \phi_{1}^{-1}(x)=h(\sqrt[3]{x})=\sum_{n=0}^{\infty} h_{n} x^{n} .
$$

This allow us to well define $\left(\phi_{0} \circ h \circ \phi_{1}^{-1}\right)^{(n)}(0)=n!h_{n}$ for $n \in \mathbb{N}$. Hence $\phi_{0} \circ h \circ \phi_{1}^{-1}$ has derivatives of all orders at $x=0$, that is, it is smooth at $x=0$.

