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Exercise 2

We consider Sn with the smooth structure given by the stereographic projections PN

and PS (N being the north pole and S the south pole). In particular, the problem
implicitly tells us that the stereographic projections are C∞ related. We want to show
that the following charts are C∞ related to the stereographic projections:

f : Sn ∩ {x ∈ Rn+1 : xi > 0} −→ Rn

(x1, . . . , xn+1) 7−→ (x1, . . . , xi−1, xi+1, . . . , xn+1),

g : Sn ∩ {x ∈ Rn+1 : xi < 0} −→ Rn

(x1, . . . , xn+1) 7−→ (x1, . . . , xi−1, xi+1, . . . , xn+1).

In virtue of the above, it is enough to prove that fi is related to PS and gi is related to
PN . To do this, we find an explicit expression for the stereographic projections, their
inverses and the inverses of the two functions above.

Starting with PN , we consider the vector joining the north pole N with (x1, . . . , xn+1)
a generic point in Sn \ {N}, that is, ~v = (x1, . . . , xn, xn+1 − 1). Now we add this to the
north pole enough times so that we land in the plane xn+1 = 0, that is, we want k ∈ R
such that 1 + k(xn+1 − 1) = 0, otherwise said k = 1/1− xn+1. Hence:

PN : Sn \ {N} −→ Rn

(x1, . . . , xn+1) 7−→
(

x1
1−xn+1

, . . . , xn
1−xn+1

)
.

To find the inverse P−1N , we let (X1, . . . , Xn) ∈ Rn and (x1, . . . , xn+1) ∈ Sn \ {N} be our
coordinates and we have to consider the system of equations given by:

X1 =
x1

1− xn+1
, . . . , Xn =

xn
1− xn+1

, x21 + · · ·+ x2n+1 = 1,

that is:

x1 = X1(1−xn+1), . . . , xn = Xn(1−xn+1), (X1(1−xn+1))
2+· · ·+(Xn(1−xn+1))

2+x2n+1 = 1

hence there are two solutions for xn+1:

xn+1 = −1 and thus x1 = · · · = xn = 0 or xn+1 =
X2

1 + · · ·+X2
n − 1

X2
1 + · · ·+X2

n + 1
,

resulting in:

P−1N : Rn −→ Sn \ {N}
(X1, . . . , Xn) 7−→

(
2X1

X2
1+···+X2

n+1
, . . . , 2Xn

X2
1+···+X2

n+1
,
X2

1+···+X2
n−1

X2
1+···+X2

n+1

)
.

Notice how component wise, the function is C∞.
Continuing with PS , we consider the vector joining the south pole S with (x1, . . . , xn+1)

a generic point in Sn \ {S}, that is, ~v = (x1, . . . , xn, xn+1 + 1). Now we add this to the
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north pole enough times so that we land in the plane xn+1 = 0, that is, we want k ∈ R
such that −1 + k(xn+1 + 1) = 0, otherwise said k = 1/1 + xn+1. Hence:

PS : Sn \ {S} −→ Rn

(x1, . . . , xn+1) 7−→
(

x1
1+xn+1

, . . . , xn
1+xn+1

)
.

To find the inverse P−1S , we let (X1, . . . , Xn) ∈ Rn and (x1, . . . , xn+1) ∈ Sn \ {N} be our
coordinates and we have to consider the system of equations given by:

X1 =
x1

1 + xn+1
, . . . , Xn =

xn
1 + xn+1

, x21 + · · ·+ x2n+1 = 1,

that is:

x1 = X1(1+xn+1), . . . , xn = Xn(1+xn+1), (X1(1+xn+1))
2+· · ·+(Xn(1+xn+1))

2+x2n+1 = 1

hence there are two solutions for xn+1:

xn+1 = 1 and thus x1 = · · · = xn = 0 or xn+1 = −X
2
1 + · · ·+X2

n − 1

X2
1 + · · ·+X2

n + 1
,

resulting in:

P−1S : Rn −→ Sn \ {S}
(X1, . . . , Xn) 7−→

(
2X1

X2
1+···+X2

n+1
, . . . , 2Xn

X2
1+···+X2

n+1
,−X2

1+···+X2
n−1

X2
1+···+X2

n+1

)
.

Notice how component wise, the function is C∞.
Finally, a computation of the inverses f−1j and g−1j is obtained from imposing that

the norm of the coordinates is one, hence all the components are the identity except the
j-th one (note how X̂j denotes that there is no Xj component in Rn):

f−1j : Rn −→ Sn ∩ {x ∈ Rn+1 : xi > 0}
(X1, . . . , X̂j , . . . , Xn) 7−→

(
X1, . . . ,

√
1−X2

1 − · · · −X2
n, . . . , Xn

)
,

g−1j : Rn −→ Sn ∩ {x ∈ Rn+1 : xi < 0}
(X1, . . . , X̂j , . . . , Xn) 7−→

(
X1, . . . ,

√
1−X2

1 − · · · −X2
n, . . . , Xn

)
.

Again, notice how in the square root the term X2
j is not included in the subtraction.

Moreover, notice how component wise in their domain, the functions are C∞. It is
important to mention that we need here to restrict to the domain, since the assignment
(X1, . . . , X̂j , . . . , Xn) 7−→

√
1−X2

1 − · · · −X2
n is not C∞ in general: if 1 = X2

1 + · · ·+X2
n

this is not continuously differentiable. However, since we must land in Sn ∩ {x ∈ Rn+1 :
xi > 0} or Sn ∩ {x ∈ Rn+1 : xi < 0}, we have that X2

1 + · · · + X2
n > 0, resolving this

issue.
Now we have that all the compositions fj ◦ P−1S , gj ◦ P−1N , PS ◦ f−1j and PN ◦ g−1j

are component wise C∞ since over the real numbers the composition of C∞ functions is
C∞, as desired. We will have to restrict us to the case of C∞ functions over the reals
multiple times in the following.
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Exercise 3

1. Prove that all C∞ functions are continuous, and that the composition of C∞ func-
tions is C∞.

For the first part, given f : M −→ N a C∞ function between manifolds, we want to
check that it is continuous. Let V ⊂ N be an open set. Since we have a maximal
atlas in N that gives the notion of smoothness, and the charts in such atlas cover
N and are compatible, we can find a homeomorphism y such that (y, V ) belongs
to the atlas in N . Now, we know that by definition, for any chart (x, U) of M
we have that y ◦ f ◦ x−1 : x(U) −→ y(V ) is a real valued C∞ function, hence
it is continuous. Moreover, since x and y are diffeomorphisms in their respective
smooth structures, they are homeomorphisms hence continuous with continuous
inverse. Since the composition of continuous functions between topological spaces
are continuous, we obtain that f = y−1 ◦ (y ◦ f ◦ x−1) ◦ x : f−1(V ) −→ V is a
continuous function. In particular, for every V ⊂ N open, we have that f−1(V ) is
open, which is the definition of f : M −→ N being continuous, as desired.

For the second part, let f : M −→ N and g : N −→ T be C∞ functions. Let
(x, U), (y, V ), (z,W ) be any charts in M , N , T respectively. Then:

x ◦ (g ◦ f) ◦ z−1 = (x ◦ g ◦ y−1) ◦ (y ◦ g ◦ z−1) : z(W ) −→ y(V ) −→ x(U),

which is a C∞ function in the real numbers since is is a composition of two C∞
functions in the real numbers, in virtue of the definition of f and g being C∞
functions between manifolds. Hence, this means precisely that g ◦ f : M −→ T is
a C∞ function between manifolds, as desired.

2. Prove that a function f : M −→ N is C∞ if and only if g ◦ f : M −→ R is C∞ for
every g : N −→ R that is C∞.

⇒) Let f : M −→ N and g : N −→ R be C∞ functions. By the above, we know
that the composition of C∞ functions is a C∞ function, hence g ◦ f : M −→ R is a
C∞ function.

⇐) Let x, U , (y, V ) be any charts on M , N respectively. Denoting by yi : N −→ R
the i-th component of y, we obtain by hypothesis that yi ◦ f : M −→ R is a
C∞ function. Moreover, since x−1 is a C∞ function because x being a chart in
particular means that it is a diffeomorphism, by the point above we obtain that
yi ◦ f ◦ x−1 : x(U) −→ yi(V ) is a real valued C∞ function. Hence the function
y ◦ f ◦ x−1 : x(U) −→ y(V ) is real valued and C∞ component wise, meaning that
it is C∞ as a real valued function. This is precisely the definition of f : M −→ N
being a C∞ function between manifolds.
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Exercise 4

Let a function f : Hn −→ R have two C∞ extensions g and h defined on a neighborhood
of Hn. Prove that ∂jg coincides with ∂jh on Rn−1 × {0}.

First, recall that g and h being extensions of f means that g(Hn) = f(Hn) = h(Hn).
Now, applying the definition of a partial derivative for 1 ≤ j ≤ n− 1, we obtain that:

∂jg(x1, . . . , xn−1, 0) = lim
x→0

g(x1, . . . , xj + x, . . . , xn−1, 0)− g(x1, . . . , xn−1, 0)

x

= lim
x→0

f(x1, . . . , xj + x, . . . , xn−1, 0)− f(x1, . . . , xn−1, 0)

x

= lim
x→0

h(x1, . . . , xj + x, . . . , xn−1, 0)− h(x1, . . . , xn−1, 0)

x
= ∂jh(x1, . . . , xn−1, 0),

since both (x1, . . . , xj + x, . . . , xn−1, 0), (x1, . . . , xn−1, 0) ∈ Hn. Notice that for the last
component, since we assume that g and h are C∞, the limit that we want to compute is
well defined, hence it doesn’t matter how we make x ∈ R go to 0 because all of the ways
will coincide. Hence we can apply the above for the case x > 0, j = n and obtain:

∂ng(x1, . . . , xn−1, 0) = lim
x→0

g(x1, . . . , xn−1, x)− g(x1, . . . , xn−1, 0)

x

= lim
x→0

f(x1, . . . , xn−1, x)− f(x1, . . . , xn−1, 0)

x

= lim
x→0

h(x1, . . . , xn−1, x)− h(x1, . . . , xn−1, 0)

x
= ∂nh(x1, . . . , xn−1, 0),

since again (x1, . . . , xn−1, x), (x1, . . . , xn−1, 0) ∈ Hn because of the choice for x. This
proves the desired result.
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Exercise 5

Consider two smooth structures over R, the first U being the maximal atlas containing
the identity and the second V the maximal atlas containing taking the third power.

1. Show that the homeomorphisms φ0 and φ1 are not C∞ related. For this, note that
φ−11 (x) = 3

√
x, hence:

φ0 ◦ φ−11 : R −→ R
x 7−→ 3

√
x

with
(φ0 ◦ φ−11 )′ : R −→ R

x 7−→ 1

2
3√
x2

is a function that is not C∞ (it is not even C1, the derivative is not continuous),
hence φ0 and φ1 are not C∞ related.

2. Equip M = R with U and N = R with V, consider:

f : M −→ N
x 7−→ x

and
g : N −→ M

x 7−→ x

we want to find which of these maps is smooth. Notice that g is not smooth since
for the defining charts φ0 of U and φ1 of V we have:

φ0 ◦ g ◦ φ−11 : R −→ R
x 7−→ 3

√
x

which, as stated above, is not C∞. For f , we can apply the same charts and find
that:

φ1 ◦ f ◦ φ−10 : R −→ R
x 7−→ x

which is indeed C∞. Now consider any charts x in M and y in N . Their defining
property is that they are C∞ related to φ0 and φ1 respectively, in particular, φ0◦x−1
is C∞ and y ◦ φ−11 is C∞. Now:

y ◦ f ◦ x−1 = (y ◦ φ−11 ) ◦ (φ1 ◦ f ◦ φ−10 ) ◦ (φ0 ◦ x−1)

is a real valued C∞ function since it is the composition of three real valued C∞
functions. Since we proved this for any charts, this is precisely the definition of
f : M −→ N being C∞ between manifolds.

3. Show that a function h : N −→ R is smooth at x = 0 if and only if the Taylor
series of h at 0 contains only terms of the form x3k with k ∈ N.

⇒) Let h : N −→ R be smooth at x = 0. This in particular means that:

φ0 ◦ h ◦ φ−11 : R −→ R
x 7−→ h ( 3

√
x)
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is smooth. Since h : R −→ R, we have the usual form for its Taylor series:

h(x) =
∞∑
n=0

h(n)(0)

n!
xn hence h

(
3
√
x
)

=
∞∑
n=0

h(n)(0)

n!
3
√
xn.

Notice that since this is a Taylor series, it converges at x = 0 and thus we may
find the derivative at x = 0 by differentiating inside the sum. However checking
element wise, 3

√
xn is C∞ when n = 3k for k ∈ N, but in the rest of the cases we

find that 3
√
xn differentiated n mod 3 times is no longer C1, hence 3

√
xn is not C∞.

Thus, for h to be smooth, we need to only have the terms of the form x3k for k ∈ N
in the Taylor expansion.

⇐) Suppose h : N −→ R has as a Taylor expansion near x = 0:

h(x) =
∞∑
n=0

hnx
3n.

Then near x = 0 we have:

φ0 ◦ h ◦ φ−11 (x) = h
(

3
√
x
)

=

∞∑
n=0

hnx
n.

This allow us to well define
(
φ0 ◦ h ◦ φ−11

)(n)
(0) = n!hn for n ∈ N. Hence φ0◦h◦φ−11

has derivatives of all orders at x = 0, that is, it is smooth at x = 0.
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