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Exercise 2

We consider S™ with the smooth structure given by the stereographic projections Py
and Ps (N being the north pole and S the south pole). In particular, the problem
implicitly tells us that the stereographic projections are C* related. We want to show
that the following charts are C* related to the stereographic projections:

FfoooStn{zeRM i >0 — R™
(.’El,...,.InJrl) — ($1,...,mi,1,xi+1,...,xn+1),

g @ S"Nn{zreRl: i <0} — R"
(ml,...,:an) — (xl,...,xi_1,$i+1,...,$n+1).

In virtue of the above, it is enough to prove that f; is related to Pg and g; is related to
Py. To do this, we find an explicit expression for the stereographic projections, their
inverses and the inverses of the two functions above.

Starting with Py, we consider the vector joining the north pole N with (z1,...,Zp41)
a generic point in S™ \ {N}, that is, ¥ = (z1,...,Zpn, Tnt1 — 1). Now we add this to the
north pole enough times so that we land in the plane z,11 = 0, that is, we want k£ € R
such that 1+ k(x,4+1 — 1) = 0, otherwise said k = 1/1 — x,,+1. Hence:

Py : S\ {N} —» R"

1 x
(xl,,xn_l,_l) ? (1_$n+17."’1_33:b1,+1>'

To find the inverse Py, we let (X1,...,X,) € R" and (21, ...,2,41) € S™\ {N} be our
coordinates and we have to consider the system of equations given by:

z1 Tn

X, X Tl =1,

:7"' = -
1 —2pp 1—zpp1

that is:
21 =X1(1-Zns1)s o2 = Xn(I—2np1), (X1 (1=2p41)) %+ - ‘+(Xn(1—mn+1))2+xi+1 =1
hence there are two solutions for x,y1:

X+ +X2-1
Xi+- + X241

Tpt1 = —land thusz; =--- =2, =0 o0r x4 =

resulting in:

Pyt R™ — S\ {N}
2X; 2X, X+ Xa—1
(X1,.., Xn) (X12+--~+X;§+1’ U XA X241 X+ X241 )

Notice how component wise, the function is C*°.
Continuing with Pg, we consider the vector joining the south pole S with (z1, ..., Zn41)
a generic point in S™ \ {S}, that is, ¥ = (z1,...,Zn, Tnt1 + 1). Now we add this to the



north pole enough times so that we land in the plane x,4; = 0, that is, we want £k € R
such that —1 + k(2,41 + 1) = 0, otherwise said k = 1/1 + x,, 1. Hence:

Ps :  S"\{S} — R"

x1 z
(xl""7$"+1) — <1+xn+1""’1+12+1)'

To find the inverse P!, we let (X1,...,X,) € R" and (21, ...,2,41) € ™\ {N} be our
coordinates and we have to consider the system of equations given by:

x1 Tn

Xp=—"2 L Xy=—"
1—|—l’n+1 1+xn+1

,JJ%+"'+SE%+1 = ]-7
that is:
xr1 = X1(1+$n+1)7 sy Iy = Xn(1+xn+1)7 (X1(1+$n+1))2+ : +(Xn(1+$n+1))2+$,21+1 =1

hence there are two solutions for x,y1:

X344+ X2-1
XP+- -+ X241

Tpt1 =1land thusz; =--- =z, =0o0r ry41 =

resulting in:

Pt R" — S"\{S}
2X 2X,, X4 X2 -1
(X1,.., Xn) — (X12+W+X%+1,...,X%+_“+X%+1, .

Notice how component wise, the function is C*°.

Finally, a computation of the inverses f;l and g;l is obtained from imposing that
the norm of the coordinates is one, hence all the components are the identity except the
j-th one (note how X]- denotes that there is no X; component in R"):

f;l : R" - Stn{z e R*!: 2t > 0}
(X1, X X)) (Xl,...,\/1—X12—---—X,%,...,Xn),

gj_1 : R™ — SN {xr e Rzt < 0}
(X1, Xgy o X)) (Xl,...,\/1—X12—---—Xg,...,Xn).

Again, notice how in the square root the term ij is not included in the subtraction.
Moreover, notice how component wise in their domain, the functions are C*°. It is
important to mention that we need here to restrict to the domain, since the assignment
(X1, Xy ooy X)) — /1= X7 — - = XZisnot C* in general: if 1 = X7 4-- -+ X2
this is not continuously differentiable. However, since we must land in S™ N {x € R**! :
2zt > 0} or SN {xr € R*™! : ¥ < 0}, we have that X7 + --- + X2 > 0, resolving this
issue.

Now we have that all the compositions f; o Pgl, gjo Pﬁl, Ps o fj_1 and Py o gj_1
are component wise C* since over the real numbers the composition of C* functions is
C®°, as desired. We will have to restrict us to the case of C* functions over the reals
multiple times in the following.




Exercise 3

1. Prove that all C*° functions are continuous, and that the composition of C* func-
tions is C*°.
For the first part, given f : M — N a C* function between manifolds, we want to
check that it is continuous. Let V' C N be an open set. Since we have a maximal
atlas in N that gives the notion of smoothness, and the charts in such atlas cover
N and are compatible, we can find a homeomorphism y such that (y, V') belongs
to the atlas in N. Now, we know that by definition, for any chart (x,U) of M
we have that yo foz™! : 2(U) — y(V) is a real valued C* function, hence
it is continuous. Moreover, since x and y are diffeomorphisms in their respective
smooth structures, they are homeomorphisms hence continuous with continuous
inverse. Since the composition of continuous functions between topological spaces
are continuous, we obtain that f = y~lo(yo foz HNox: fFH(V) — Visa
continuous function. In particular, for every V C N open, we have that f~(V) is
open, which is the definition of f : M — N being continuous, as desired.

For the second part, let f: M — N and g : N — T be C* functions. Let
(x,U), (y,V), (2,W) be any charts in M, N, T respectively. Then:

wo(goflozt =(zogoyo(yogorz): (W) — y(V) — 2(U),
which is a C* function in the real numbers since is is a composition of two C*
functions in the real numbers, in virtue of the definition of f and g being C*
functions between manifolds. Hence, this means precisely that go f : M — T is
a C* function between manifolds, as desired.

2. Prove that a function f: M — N is C* if and only if go f : M — R is C*° for
every g : N — R that is C*°.

=) Let f: M — N and g : N — R be C* functions. By the above, we know
that the composition of C* functions is a C* function, hence go f : M — R is a
C* function.

<) Let z,U, (y, V) be any charts on M, N respectively. Denoting by y; : N — R
the ¢-th component of y, we obtain by hypothesis that y; 0o f : M — R is a
C*> function. Moreover, since x~! is a C* function because x being a chart in
particular means that it is a diffeomorphism, by the point above we obtain that
yiofoxz t:z(U) — y(V) is a real valued C* function. Hence the function
yofox~t:x(U) — y(V) is real valued and C> component wise, meaning that
it is C*° as a real valued function. This is precisely the definition of f: M — N
being a C*° function between manifolds.



Exercise 4

Let a function f : H" — R have two C*° extensions g and h defined on a neighborhood
of H". Prove that d;g coincides with d;h on R"~1 x {0}.

First, recall that g and h being extensions of f means that g(H") = f(H") = h(H").
Now, applying the definition of a partial derivative for 1 < j <mn — 1, we obtain that:

g(x1,...,xj+x,...,2p—1,0) — g(z1,...,25n-1,0)

8jg(:vl,...,xn_1,0) = ilir(l] .
— lim fler,...,zj+x,...,2y-1,0) — f(z1,...,24-1,0)

z—0 T
— fim h(zi,...,25+x,...,2p-1,0) — h(x1,...,25-1,0)

z—0 xT

= ajh(.’L‘l, ce ,CL‘nfl,O),

since both (z1,...,z; +z,...,2,-1,0),(21,...,2n—1,0) € H". Notice that for the last
component, since we assume that g and h are C*, the limit that we want to compute is
well defined, hence it doesn’t matter how we make x € R go to 0 because all of the ways
will coincide. Hence we can apply the above for the case x > 0, j = n and obtain:

Ong(rs - in1,0) = hmg(xl,...,xn,l,x)—g(wl,...,xn,l,O)
x—0 T

— lim f(xla"'axnflal')_f(wla"'axnflao)
x—0 T

~ lim h(zi,...,xn—1,2) — h(x1,...,25-1,0)
x—0 xT

= 8nh(l'1, ey n—1, 0),

since again (z1,...,%n—1,2),(21,...,2p—1,0) € H" because of the choice for x. This
proves the desired result.



Exercise 5

Consider two smooth structures over R, the first &/ being the maximal atlas containing
the identity and the second V the maximal atlas containing taking the third power.

1. Show that the homeomorphisms ¢g and ¢; are not C* related. For this, note that
o7 (z) = ¥z, hence:

dogr! R — R (boogr) : R — R
x — Yz T — ¥

is a function that is not C* (it is not even C!, the derivative is not continuous),
hence ¢g and ¢ are not C* related.

2. Equip M = R with &/ and N = R with V, consider:

f: M — N g : N
x

and M
r — x

—
—
we want to find which of these maps is smooth. Notice that g is not smooth since
for the defining charts ¢g of U and ¢; of V we have:

¢Oogo¢1_1 : R — R
x — Yz

which, as stated above, is not C*°. For f, we can apply the same charts and find

that:
¢r10fo qbal : R — R
r — x

which is indeed C*°. Now consider any charts  in M and y in V. Their defining
property is that they are C* related to ¢ and ¢ respectively, in particular, ¢gox~!
is C>® and y o ¢; ! is C*°. Now:

yofoart=(yopr ) o(profodyt)o(dpor™?)

is a real valued C*° function since it is the composition of three real valued C*
functions. Since we proved this for any charts, this is precisely the definition of
f: M — N being C* between manifolds.

3. Show that a function h : N — R is smooth at x = 0 if and only if the Taylor
series of h at 0 contains only terms of the form z3* with k& € N.

=) Let h: N — R be smooth at x = 0. This in particular means that:

¢Ooho¢1_1 : R — R
v h(YE)



is smooth. Since h : R — R, we have the usual form for its Taylor series:

. pn) . pn)
h(zx) = Z_; f n'(o)x” hence h (V/z) = Z;) h n‘(O) V.

Notice that since this is a Taylor series, it converges at z = 0 and thus we may
find the derivative at x = 0 by differentiating inside the sum. However checking
element wise, v/2" is C* when n = 3k for k € N, but in the rest of the cases we
find that /2" differentiated n mod 3 times is no longer C', hence /2" is not C*°.
Thus, for h to be smooth, we need to only have the terms of the form z3* for k € N
in the Taylor expansion.

<) Suppose h: N — R has as a Taylor expansion near z = 0:
o0
h(z) = Z R ™.
n=0
Then near x = 0 we have:
o0
doohod (@) =h(Vz) = hna",
n=0

This allow us to well define (gbo oho gbfl)(n) (0) = n!h,, for n € N. Hence gboohoqbl*l
has derivatives of all orders at = 0, that is, it is smooth at = 0.



