Differential Geometry I - Homework 2

Pablo Sánchez Ocal

February 6th, 2017

1. Show that the spherical coordinates are \mathcal{C}^{∞} related to the identity in \mathbb{R}^n . The spherical coordinates are:

$$(r, \theta_1, \dots, \theta_{n-1}) : (0, \infty) \times (0, \pi) \times \dots \times (0, \pi) \times (0, 2\pi) \longrightarrow \mathbb{R}^n$$

given by:

$$x_{1} = r \cos \theta_{1},$$

$$x_{2} = r \sin \theta_{1} \cos \theta_{2},$$

$$\vdots$$

$$x_{n-1} = r \sin \theta_{1} \cdots \sin \theta_{n-2} \cos \theta_{n-1},$$

$$x_{n} = r \sin \theta_{1} \cdots \sin \theta_{n-2} \sin \theta_{n-1}.$$

For simplicity of notation, we will denote the spherical coordinates by ψ . It is enough to prove that ψ is \mathcal{C}^{∞} related to the identity on an open subset of \mathbb{R}^n . For this, we first compute ψ^{-1} . Note that squaring all the equations and solving for r we clearly have that $r = \sqrt{x_1^2 + \cdots + x_n^2}$, hence we simply have to use that $\sin(\arccos(\theta)) = \sqrt{1 - \theta^2}$ to solve the *i*-th equation for $\theta_i, i = 1, \ldots, n-1$, obtaining that component-wise ψ^{-1} is given by:

$$r = \sqrt{x_1^2 + \dots + x_n^2},$$

$$\theta_1 = \arccos\left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}\right)$$

$$\vdots$$

$$\theta_{n-1} = \arccos\left(\frac{x_{n-1}}{\sqrt{x_{n-1}^2 + x_n^2}}\right).$$

Considering that the domain where the function $\arccos(\theta)$ is defined is $\theta \in [-1, 1]$, but we must have r > 0 (notice the importance of the strictly greater than 0 since this will allow us to take an open), this means that we cannot take $\theta = 0$. Hence we choose to take:

$$\psi^{-1}: (0,\infty) \times \cdots \times (0,\infty) \longrightarrow (0,\infty) \times (0,\pi/2) \times \cdots \times (0,\pi/2),$$

notice that $(0, \infty) \times \cdots \times (0, \infty)$ is an open subset of \mathbb{R}^n , and for $\{x_i\}_{i=1}^n$ in the domain we have that $0 < x_i/\sqrt{x_i^2 + \cdots + x_n^2} < 1$ for $i = 1, \ldots, n$ (notice again the importance of the strict inequalities, which means that the arccos never touches 1 and thus it is \mathcal{C}^∞ in the domain). Hence the arccos lands in $(0, \pi/2)$, and $(0, \infty) \times (0, \pi/2) \times \cdots \times (0, \pi/2)$ is an open subset of $(0, \infty) \times (0, \pi) \times \cdots \times (0, \pi) \times (0, 2\pi)$.

Finally, both $\psi \circ \operatorname{id}_{\mathbb{R}^n}^{-1}$ and $\operatorname{id}_{\mathbb{R}^n} \circ \psi^{-1}$ are component-wise \mathcal{C}^{∞} functions in their domains (since they are composition of \mathcal{C}^{∞} in their domains, in particular notice how we chose the domains accordingly so that this is satisfied), hence ψ and $\operatorname{id}_{\mathbb{R}^n}$ are \mathcal{C}^{∞} related, as we wanted to prove.

2. Show that the spherical coordinates are C^{∞} related to the stereographic projections. The spherical coordinates are:

$$(\theta_1,\ldots,\theta_{n-1}):(0,\pi)\times\cdots\times(0,\pi)\times(0,2\pi)\longrightarrow S^{n-1}\subset\mathbb{R}^n$$

given by:

$$x_{1} = \cos \theta_{1},$$

$$x_{2} = \sin \theta_{1} \cos \theta_{2},$$

$$\vdots$$

$$x_{n-1} = \sin \theta_{1} \cdots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_{n} = \sin \theta_{1} \cdots \sin \theta_{n-2} \sin \theta_{n-1}$$

For simplicity of notation, we will denote the spherical coordinates by φ (is is simply taking r = 1 in ψ). In virtue of Exercise 1 in Homework 1, it is enough to prove that φ is \mathcal{C}^{∞} related to f_j^{-1} defined by the functions (notice how we would "expect" φ to be related directly to f_j , but this is impossible since the domain and target do not coincide):

$$\begin{array}{rcl} f & : & S^{n-1} \cap \{x \in \mathbb{R}^n : x^i > 0\} & \longrightarrow & \mathbb{R}^{n-1} \\ & & (x_1, \dots, x_n) & \longmapsto & (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n), \end{array}$$

for i = 1, ..., n on an open subset of \mathbb{R}^n . Recall that:

$$\begin{array}{cccc} f_j^{-1} & : & \mathbb{R}^{n-1} & \longrightarrow & S^{n-1} \cap \{x \in \mathbb{R}^n : x^i > 0\} \\ & & (X_1, \dots, \hat{X}_j, \dots, X_{n-1}) & \longmapsto & \left(X_1, \dots, \sqrt{1 - X_1^2 - \dots - X_{n-1}^2}, \dots, X_{n-1}\right). \end{array}$$

We know by the above that component-wise φ^{-1} is given by:

$$\theta_1 = \arccos\left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}\right),$$

$$\vdots$$

$$\theta_{n-1} = \arccos\left(\frac{x_{n-1}}{\sqrt{x_{n-1}^2 + x_n^2}}\right).$$

and we choose to take:

$$\varphi^{-1}: (0,\infty) \times \cdots \times (0,\infty) \longrightarrow (0,\pi/2) \times \cdots \times (0,\pi/2),$$

where by the reasoning above we have that $(0, \infty) \times \cdots \times (0, \infty)$ is an open subset of \mathbb{R}^{n-1} and $(0, \pi/2) \times \cdots \times (0, \pi/2)$ is an open subset of $(0, \pi) \times \cdots \times (0, \pi) \times (0, 2\pi)$. Notice how $\varphi \circ f_j$ is well defined since $f_j(S^{n-1} \cap \{x \in \mathbb{R}^n : x^i > 0\}) \subset (0, 1) \times \cdots \times (0, 1) \subset (0, \pi) \times \cdots \times (0, \pi) \times (0, 2\pi)$, hence we can apply φ . This is a \mathcal{C}^{∞} function because component-wise it is a composition of \mathcal{C}^{∞} functions (as usual, in their domains).

Moreover, notice how we need to restrict the domain to make $f_j^{-1} \circ \varphi^{-1}$ well defined. To do this, we start by determining values for x_n , say $x_n \in (1,2)$. Looking at the expression for θ_{n-1} and imposing $0 < \theta_{n-1} < 1$, we can find for each x_n an interval where x_{n-1} is defined. Since the equation determining this interval is continuous, we obtain an open rectangle where θ_{n-1} behaves as desired. Repeating this process (notice how we essentially use that we can solve the equation $\theta = \arccos\left(x/\sqrt{x^2+y^2}\right)$ for x given y), we obtain an open domain $D \subset \mathbb{R}^{n-1}$ such that $\varphi^{-1}(D) \subset (0,1) \times \cdots \times (0,1)$, hence we can apply f_j^{-1} . This is a \mathcal{C}^{∞} function because component-wise it is a composition of \mathcal{C}^{∞} functions (again, in their domains).

Let M_1 , M_2 be smooth manifolds, we equip $M_1 \times M_2$ with the smooth structure given by product of charts: for (x_1, U_1) and (x_2, U_2) charts of M_1 and M_2 respectively, we determine that $x_1 \times x_2 : U_1 \times U_2 \longrightarrow \mathbb{R}^{m_1+m_2}$ defined by $x_1 \times x_2(p_1, p_2) = (x_1(p_1), x_2(p_2))$ are in our atlas. Notice how this automatically makes the projections $\pi_i : M_1 \times M_2 \longrightarrow$ M_i for i = 1, 2 smooth.

1. Show that $M_1 \times M_2$ is diffeomorphic to $M_2 \times M_1$. For this, consider the map $f: M_1 \times M_2 \longrightarrow M_2 \times M_1$ given by $f(p_1, p_2) = (p_2, p_1)$. This clearly bijective having as inverse $g: M_2 \times M_1 \longrightarrow M_1 \times M_2$ given by $g(p_2, p_1) = (p_1, p_2)$. Both f and g are obviously continuous, since given $U_1 \subset M_1$ and $U_2 \subset M_2$ opens, we have that for the basic opens: $f^{-1}(U_2 \times U_1) = U_1 \times U_2$ and $g^{-1}(U_1 \times U_2) = U_2 \times U_1$, both open in $M_1 \times M_2$ and $M_2 \times M_1$ respectively. Thus f is a homeomorphism. Now, consider $(x_1, U_1), (x_2, U_2)$ and $(x'_2, U'_2), (x'_1, U'_1)$ determining charts of $M_1 \times M_2$ and $M_2 \times M_1$ respectively. For $(p_1, p_2) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ we have:

$$\begin{aligned} x_2' \times x_1' \circ f \circ (x_1 \times x_2)^{-1}(p_1, p_2) &= x_2' \times x_1' \circ f \circ x_1^{-1} \times x_2^{-1}(p_1, p_2) \\ &= x_2' \times x_1' \circ x_2^{-1} \times x_1^{-1}(p_2, p_1) \\ &= x_2' \circ x_2^{-1} \times x_1' \circ x_1^{-1}(p_2, p_1), \end{aligned}$$
$$\begin{aligned} x_1 \times x_2 \circ g \circ (x_2' \times x_1')^{-1}(p_2, p_1) &= x_1 \times x_2 \circ g \circ (x_2')^{-1} \times (x_1')^{-1}(p_2, p_1) \\ &= x_1 \times x_2 \circ (x_1')^{-1} \times (x_2')^{-1}(p_1, p_2) \\ &= x_1 \circ (x_1')^{-1} \times x_2 \circ (x_2')^{-1}(p_1, p_2), \end{aligned}$$

where both are \mathcal{C}^{∞} since component-wise they are \mathcal{C}^{∞} since x'_2 , x_2 and x'_1 , x_1 are \mathcal{C}^{∞} related (they belong to the same atlas). This means that f and g are both smooth, thus f is a diffeomorphism, as desired.

2. Show that the slice maps are differentiable:

where $\overline{q_2} \in M_2$ and $\overline{q_1} \in M_1$ are fixed. We have in the above notation:

$$\begin{aligned} x_1' \times x_2' \circ \varphi_1 \circ x_1^{-1}(p_1) &= x_1' \times x_2'(x_1^{-1}(p_1), \overline{q_2}) = (x_1' \circ x_1^{-1}(p_1), x_2'(\overline{q_2})), \\ x_1' \times x_2' \circ \varphi_2 \circ x_2^{-1}(p_2) &= x_1' \times x_2'(\overline{q_1}, x_2^{-1}(p_2)) = (x_1'(\overline{q_1}), x_2' \circ x_2^{-1}(p_2)), \end{aligned}$$

where both are \mathcal{C}^{∞} since component-wise they are \mathcal{C}^{∞} since x'_2 , x_2 and x'_1 , x_1 are \mathcal{C}^{∞} related (they belong to the same atlas) and $x'_2(\overline{q_2})$, $x'_1(\overline{q_1})$ are constant.

3. Show that a map $f: N \longrightarrow M_1 \times M_2$ is smooth if and only if $\pi_i \circ f: N \longrightarrow M_i$, i = 1, 2, are smooth.

 \Rightarrow) As we noticed above, with the induced structure on $M_1 \times M_2$ the projections are smooth. Hence using Exercise 3 in Homework 1, the composition of smooth functions is smooth (and f is smooth by hypothesis), thus $\pi_i \circ f : N \longrightarrow M_i$, i = 1, 2, are smooth.

 \Leftarrow) Use the above notation for charts of $M_1 \times M_2$, and let (y, U) a chart of N (say onto \mathbb{R}^n). Consider:

$$\begin{aligned} x_1 \times x_2 \circ f \circ y^{-1} &= x_1 \times x_2 \circ ([\pi_1 \circ f] \times [\pi_2 \circ f]) \circ y^{-1} \\ &= (x_1 \circ [\pi_1 \circ f] \times x_2 \circ [\pi_2 \circ f]) \circ y^{-1} \\ &= (x_1 \circ [\pi_1 \circ f] \circ y^{-1} \times x_2 \circ [\pi_2 \circ f] \circ y^{-1}), \end{aligned}$$

that is \mathcal{C}^{∞} since component-wise it is \mathcal{C}^{∞} since composition of \mathcal{C}^{∞} functions is \mathcal{C}^{∞} (we have x_1, x_2, y diffeomorphisms and $\pi_1 \circ f, \pi_2 \circ f$ smooth by hypothesis).

Consider the coordinate system y given by (y^1, y^2) on \mathbb{R}^2 defined by $y^1 = a, y^2 = a + b$. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be smooth. Notice how y^{-1} is given by $(y^{-1})^1 = y^1, (y^{-1})^2 = y^2 - y^1)$. This also coincides with the components of I^i in terms of y^j , as is to be expected.

1. We compute $\partial f/\partial y^1$ from the definition: given $p \in \mathbb{R}^2$, we have:

$$\begin{aligned} \frac{\partial f}{\partial y^1}(p) &= D_1(f \circ y^{-1})(y(p)) \\ &= D_1(f(p))D_1((y^{-1})^1(y(p))) + D_2(f(p))D_1((y^{-1})^2(y(p))) \\ &= \frac{\partial f}{\partial I^1}(p) - \frac{\partial f}{\partial I^2}(p), \end{aligned}$$

since $D_1(f(p)) = \partial f / \partial I^1(p), D_2(f(p)) = \partial f / \partial I^2(p), D_1((y^{-1})^1) = 1, D_1((y^{-1})^2) = -1$ (the last two in virtue of the expressions for y^{-1}).

2. Applying the desired result, we obtain:

$$\frac{\partial f}{\partial y^1}(p) = \frac{\partial f}{\partial I^1}(p)\frac{\partial I^1}{\partial y^1}(p) + \frac{\partial f}{\partial I^2}(p)\frac{\partial I^2}{\partial y^1}(p) = \frac{\partial f}{\partial I^1}(p) - \frac{\partial f}{\partial I^2}(p)$$

since clearly the differentiation of $(y^{-1})^1$ and $(y^{-1})^2$ with respect to y^1 yield 1 and -1 respectively. For a general f and p, we clearly have that $\partial f/\partial y^1(p) \neq \partial f/\partial I^1(p)$.

Let M(m, n) and M(m, n; k) denote the $m \times n$ matrices and the subset of rank k.

1. Let X_0 have rank k, we want to prove the existence of permutation matrices P, Q so that PX_0Q has the top left $k \times k$ matrix non-singular. Notice that multiplying by Q having a 1 in (i, j) sends the column i to the column j, and multiplying by P having a 1 in (i, j) sends the row j to the column i.

Since X_0 having rank k means that there are k linearly independent columns, letting $X_0 = (c_1 \ldots c_n)$ be the form in columns, name them c_{i_1}, \ldots, c_{i_k} . Using Q we can send c_{i_j} to the original position of c_j in X_0 for $j = 1, \ldots, k$. Since these changes are well defined, there are n - k columns left to arrange and there are n - k spots left in Q to fill with 1, thus we can fill Q in such a way that it is a permutation matrix. Similarly, X_0 having rank k means X_0Q has rank k, thus there are k linearly independent rows, letting $X_0Q = (r_1 \ldots r_m)^T$ be the form in rows, name them r_{i_1}, \ldots, r_{i_k} . Using P we can send r_{i_j} to the original position of r_j in X_0Q for $j = 1, \ldots, k$. Since these changes are well defined, there are m - k rows left to arrange and there are m - k spots left in P to fill with 1, thus we can fill P in such a way that it is a permutation matrix. Hence by this rearrangement, we have that PX_0Q has the first k rows and the first k columns linearly independent, and if we call this A_0 , we have $A_0 \in M(k, k)$ with maximal rank, thus A_0 is non-singular.

- 2. We know that $\det(A_0) = d \neq 0$, say d > 0. We also know that the norm $|| \cdot ||_{\infty}$, that takes the maximum of the sums over the rows of the absolute values of the entries, is equivalent to the standard matrix norm (say the Euclidean norm $|| \cdot ||_2$). Since the determinant is a continuous function, for every $\delta > 0$ there is an $\epsilon' > 0$ such that if $||A A_0||_{\infty} < \epsilon'$ then $|\det(A) \det(A_0)| < \delta$. Choose $\delta = d/2$, then there is an $\epsilon' > 0$ such that $|\det(A) \det(A_0)| < d/2$, that is, $0 \neq \det(A)$, in particular A is non-singular. Now the epsilon we want is $\epsilon = \epsilon'/k$, since having all the entries of $A A_0$ less than ϵ'/k guarantees that $||A A_0||_{\infty} < k\epsilon = \epsilon'$ and thus A is non-singular.
- 3. Prove that X has rank k if and only if $D = CA^{-1}B$.

 \Leftarrow) We are given that X has a decomposition with $A \in M(k,k)$ non-singular and $D = CA^{-1}B$. Multiplying by the non-singular matrix as hinted using $Y = -CA^{-1}$, we have that the rank is maintained. However, such multiplication yields YA + C = 0 and $YB + CA^{-1}B = 0$. Hence the rank of PXQ is the rank of the matrix $(AB) \in M(k, n)$, which is k since $A \in M(k, k)$ is non singular.

 \Rightarrow) Let PXQ have rank k, multiplying by the non-singular matrix as hinted using $Y = -CA^{-1}$, we have that the rank is maintained. Since YA + C = 0, the rank is maintained if and only if YB + D = 0 (notice that here we heavily use that YB + D has zeroes at its left, hence having even one element non zero automatically increases the rank). This implies $D = -YB = CA^{-1}B$, as desired.

4. Consider the function:

$$\begin{array}{rccc} f & : & M(m,n) & \longrightarrow & M(m-k,n-k), \\ & \begin{pmatrix} A & B \\ C & D \end{pmatrix} & \longmapsto & CA^{-1}B - D \end{array}$$

Notice that it sends the bottom right $(m-k) \times (n-k)$ matrix to itself, hence somewhere in the partial differential matrix we will have a (negative) identity of size (m-k)(n-k). This implies that the rank is equal or greater than the dimension of the image M(m-k, n-k), in particular 0 is a regular value. This means in virtue of the result we are said to use that $f^{-1}(0)$ is an mn - (m-k)(n-k) = k(m+n-k)dimensional submanifold of M(m, n). Since $f^{-1}(0) = M(m, n; k)$ by the above, we obtain the desired result.

Let M be a metric space, with \mathcal{C}^{∞} related homeomorphisms $x: U \longrightarrow \mathbb{R}^n$ covering M. We want to show that the n is invariant.

Since M is metric, there is a (continuous) distance function $d(\cdot, \cdot) : M \times M \longrightarrow \mathbb{R}$. Let $p, q \in M$ such that $p \in U$, $p \in V$ and $x : U \longrightarrow \mathbb{R}^n$, $y : V \longrightarrow \mathbb{R}^m$. If d(p,q) = 0, then p = q and we may assume without loss of generality that $V \subset U$, thus x restricted to V is y and we have n = m. Suppose d(p,q) = r > 0. The function $d_p(\cdot) : M \longrightarrow [0,\infty)$ defined by $d_p(t) = d(p,t)$ is continuous because the distance is continuous. Consider $S = d_p^{-1}([0, r + \epsilon))$ for $\epsilon > 0$, since $[0, r + \epsilon)$ is open in $[0, \infty)$ we have that S is open in M. This means that there is a homeomorphism $z : S \longrightarrow \mathbb{R}^k$ that is \mathcal{C}^∞ related to the ones we had (actually, we can build it from those). Moreover, $q \in V \cap S \neq \emptyset$ and $p \in U \cap S \neq \emptyset$, thus $\mathbb{R}^k \cong z(V \cap S) \cong y(V \cap S) \cong \mathbb{R}^m$ and $\mathbb{R}^k \cong z(U \cap S) \cong x(U \cap S) \cong \mathbb{R}^n$, meaning that m = k = n, as desired.