Differential Geometry I - Homework 2

Pablo Sánchez Ocal
February 6th, 2017

Exercise 1

1. Show that the spherical coordinates are \mathcal{C}^{∞} related to the identity in \mathbb{R}^{n}. The spherical coordinates are:

$$
\left(r, \theta_{1}, \ldots, \theta_{n-1}\right):(0, \infty) \times(0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi) \longrightarrow \mathbb{R}^{n}
$$

given by:

$$
\begin{aligned}
x_{1} & =r \cos \theta_{1}, \\
x_{2} & =r \sin \theta_{1} \cos \theta_{2}, \\
\vdots & \\
x_{n-1} & =r \sin \theta_{1} \cdots \sin \theta_{n-2} \cos \theta_{n-1}, \\
x_{n} & =r \sin \theta_{1} \cdots \sin \theta_{n-2} \sin \theta_{n-1} .
\end{aligned}
$$

For simplicity of notation, we will denote the spherical coordinates by ψ. It is enough to prove that ψ is \mathcal{C}^{∞} related to the identity on an open subset of \mathbb{R}^{n}. For this, we first compute ψ^{-1}. Note that squaring all the equations and solving for r we clearly have that $r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$, hence we simply have to use that $\sin (\arccos (\theta))=\sqrt{1-\theta^{2}}$ to solve the i-th equation for $\theta_{i}, i=1, \ldots, n-1$, obtaining that component-wise ψ^{-1} is given by:

$$
\begin{aligned}
r & =\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \\
\theta_{1} & =\arccos \left(\frac{x_{1}}{\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}}\right) \\
\vdots & \\
\theta_{n-1} & =\arccos \left(\frac{x_{n-1}}{\sqrt{x_{n-1}^{2}+x_{n}^{2}}}\right)
\end{aligned}
$$

Considering that the domain where the function $\arccos (\theta)$ is defined is $\theta \in[-1,1]$, but we must have $r>0$ (notice the importance of the strictly greater than 0 since this will allow us to take an open), this means that we cannot take $\theta=0$. Hence we choose to take:

$$
\psi^{-1}:(0, \infty) \times \cdots \times(0, \infty) \longrightarrow(0, \infty) \times(0, \pi / 2) \times \cdots \times(0, \pi / 2)
$$

notice that $(0, \infty) \times \cdots \times(0, \infty)$ is an open subset of \mathbb{R}^{n}, and for $\left\{x_{i}\right\}_{i=1}^{n}$ in the domain we have that $0<x_{i} / \sqrt{x_{i}^{2}+\cdots+x_{n}^{2}}<1$ for $i=1, \ldots, n$ (notice again the importance of the strict inequalities, which means that the arccos never touches 1 and thus it is \mathcal{C}^{∞} in the domain). Hence the arccos lands in $(0, \pi / 2)$, and $(0, \infty) \times$ $(0, \pi / 2) \times \cdots \times(0, \pi / 2)$ is an open subset of $(0, \infty) \times(0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi)$.

Finally, both $\psi \circ \mathrm{id}_{\mathbb{R}^{n}}^{-1}$ and $\mathrm{id}_{\mathbb{R}^{n}} \circ \psi^{-1}$ are component-wise \mathcal{C}^{∞} functions in their domains (since they are composition of \mathcal{C}^{∞} in their domains, in particular notice how we chose the domains accordingly so that this is satisfied), hence ψ and $\mathrm{id}_{\mathbb{R}^{n}}$ are \mathcal{C}^{∞} related, as we wanted to prove.
2. Show that the spherical coordinates are \mathcal{C}^{∞} related to the stereographic projections. The spherical coordinates are:

$$
\left(\theta_{1}, \ldots, \theta_{n-1}\right):(0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi) \longrightarrow S^{n-1} \subset \mathbb{R}^{n}
$$

given by:

$$
\begin{aligned}
x_{1} & =\cos \theta_{1} \\
x_{2} & =\sin \theta_{1} \cos \theta_{2} \\
\vdots & \\
x_{n-1} & =\sin \theta_{1} \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\
x_{n} & =\sin \theta_{1} \cdots \sin \theta_{n-2} \sin \theta_{n-1}
\end{aligned}
$$

For simplicity of notation, we will denote the spherical coordinates by φ (is is simply taking $r=1$ in ψ). In virtue of Exercise 1 in Homework 1, it is enough to prove that φ is \mathcal{C}^{∞} related to f_{j}^{-1} defined by the functions (notice how we would "expect" φ to be related directly to f_{j}, but this is impossible since the domain and target do not coincide):

$$
\begin{aligned}
& f: S^{n-1} \cap\left\{x \in \mathbb{R}^{n}: x^{i}>0\right\} \longrightarrow \\
& \mathbb{R}^{n-1} \\
&\left(x_{1}, \ldots, x_{n}\right) \longmapsto\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

for $i=1, \ldots, n$ on an open subset of \mathbb{R}^{n}. Recall that:

$$
\begin{array}{rlc}
f_{j}^{-1}: & \mathbb{R}^{n-1} & \longrightarrow \\
& S^{n-1} \cap\left\{x \in \mathbb{R}^{n}: x^{i}>0\right\} \\
& \left(X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n-1}\right) & \longmapsto\left(X_{1}, \ldots, \sqrt{1-X_{1}^{2}-\cdots-X_{n-1}^{2}}, \ldots, X_{n-1}\right) .
\end{array}
$$

We know by the above that component-wise φ^{-1} is given by:

$$
\begin{aligned}
\theta_{1} & =\arccos \left(\frac{x_{1}}{\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}}\right) \\
\vdots & \\
\theta_{n-1} & =\arccos \left(\frac{x_{n-1}}{\sqrt{x_{n-1}^{2}+x_{n}^{2}}}\right)
\end{aligned}
$$

and we choose to take:

$$
\varphi^{-1}:(0, \infty) \times \cdots \times(0, \infty) \longrightarrow(0, \pi / 2) \times \cdots \times(0, \pi / 2)
$$

where by the reasoning above we have that $(0, \infty) \times \cdots \times(0, \infty)$ is an open subset of \mathbb{R}^{n-1} and $(0, \pi / 2) \times \cdots \times(0, \pi / 2)$ is an open subset of $(0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi)$. Notice how $\varphi \circ f_{j}$ is well defined since $f_{j}\left(S^{n-1} \cap\left\{x \in \mathbb{R}^{n}: x^{i}>0\right\}\right) \subset(0,1) \times$ $\cdots \times(0,1) \subset(0, \pi) \times \cdots \times(0, \pi) \times(0,2 \pi)$, hence we can apply φ. This is a \mathcal{C}^{∞} function because component-wise it is a composition of \mathcal{C}^{∞} functions (as usual, in their domains).
Moreover, notice how we need to restrict the domain to make $f_{j}^{-1} \circ \varphi^{-1}$ well defined. To do this, we start by determining values for x_{n}, say $x_{n} \in(1,2)$. Looking at the expression for θ_{n-1} and imposing $0<\theta_{n-1}<1$, we can find for each x_{n} an interval where x_{n-1} is defined. Since the equation determining this interval is continuous, we obtain an open rectangle where θ_{n-1} behaves as desired. Repeating this process (notice how we essentially use that we can solve the equation $\theta=$ $\arccos \left(x / \sqrt{x^{2}+y^{2}}\right)$ for x given $\left.y\right)$, we obtain an open domain $D \subset \mathbb{R}^{n-1}$ such that $\varphi^{-1}(D) \subset(0,1) \times \cdots \times(0,1)$, hence we can apply f_{j}^{-1}. This is a \mathcal{C}^{∞} function because component-wise it is a composition of \mathcal{C}^{∞} functions (again, in their domains).

Exercise 2

Let M_{1}, M_{2} be smooth manifolds, we equip $M_{1} \times M_{2}$ with the smooth structure given by product of charts: for $\left(x_{1}, U_{1}\right)$ and $\left(x_{2}, U_{2}\right)$ charts of M_{1} and M_{2} respectively, we determine that $x_{1} \times x_{2}: U_{1} \times U_{2} \longrightarrow \mathbb{R}^{m_{1}+m_{2}}$ defined by $x_{1} \times x_{2}\left(p_{1}, p_{2}\right)=\left(x_{1}\left(p_{1}\right), x_{2}\left(p_{2}\right)\right)$ are in our atlas. Notice how this automatically makes the projections $\pi_{i}: M_{1} \times M_{2} \longrightarrow$ M_{i} for $i=1,2$ smooth.

1. Show that $M_{1} \times M_{2}$ is diffeomorphic to $M_{2} \times M_{1}$. For this, consider the map $f: M_{1} \times M_{2} \longrightarrow M_{2} \times M_{1}$ given by $f\left(p_{1}, p_{2}\right)=\left(p_{2}, p_{1}\right)$. This clearly bijective having as inverse $g: M_{2} \times M_{1} \longrightarrow M_{1} \times M_{2}$ given by $g\left(p_{2}, p_{1}\right)=\left(p_{1}, p_{2}\right)$. Both f and g are obviously continuous, since given $U_{1} \subset M_{1}$ and $U_{2} \subset M_{2}$ opens, we have that for the basic opens: $f^{-1}\left(U_{2} \times U_{1}\right)=U_{1} \times U_{2}$ and $g^{-1}\left(U_{1} \times U_{2}\right)=U_{2} \times U_{1}$, both open in $M_{1} \times M_{2}$ and $M_{2} \times M_{1}$ respectively. Thus f is a homeomorphism. Now, consider $\left(x_{1}, U_{1}\right),\left(x_{2}, U_{2}\right)$ and $\left(x_{2}^{\prime}, U_{2}^{\prime}\right),\left(x_{1}^{\prime}, U_{1}^{\prime}\right)$ determining charts of $M_{1} \times M_{2}$ and $M_{2} \times M_{1}$ respectively. For $\left(p_{1}, p_{2}\right) \in \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}$ we have:

$$
\begin{aligned}
x_{2}^{\prime} \times x_{1}^{\prime} \circ f \circ\left(x_{1} \times x_{2}\right)^{-1}\left(p_{1}, p_{2}\right) & =x_{2}^{\prime} \times x_{1}^{\prime} \circ f \circ x_{1}^{-1} \times x_{2}^{-1}\left(p_{1}, p_{2}\right) \\
& =x_{2}^{\prime} \times x_{1}^{\prime} \circ x_{2}^{-1} \times x_{1}^{-1}\left(p_{2}, p_{1}\right) \\
& =x_{2}^{\prime} \circ x_{2}^{-1} \times x_{1}^{\prime} \circ x_{1}^{-1}\left(p_{2}, p_{1}\right), \\
x_{1} \times x_{2} \circ g \circ\left(x_{2}^{\prime} \times x_{1}^{\prime}\right)^{-1}\left(p_{2}, p_{1}\right) & =x_{1} \times x_{2} \circ g \circ\left(x_{2}^{\prime}\right)^{-1} \times\left(x_{1}^{\prime}\right)^{-1}\left(p_{2}, p_{1}\right) \\
& =x_{1} \times x_{2} \circ\left(x_{1}^{\prime}\right)^{-1} \times\left(x_{2}^{\prime}\right)^{-1}\left(p_{1}, p_{2}\right) \\
& =x_{1} \circ\left(x_{1}^{\prime}\right)^{-1} \times x_{2} \circ\left(x_{2}^{\prime}\right)^{-1}\left(p_{1}, p_{2}\right),
\end{aligned}
$$

where both are \mathcal{C}^{∞} since component-wise they are \mathcal{C}^{∞} since x_{2}^{\prime}, x_{2} and x_{1}^{\prime}, x_{1} are \mathcal{C}^{∞} related (they belong to the same atlas). This means that f and g are both smooth, thus f is a diffeomorphism, as desired.
2. Show that the slice maps are differentiable:

$$
\begin{array}{ccccc}
\varphi_{1} & : & M_{1} & \longrightarrow & M_{1} \times M_{2} \\
& q_{1} & \longmapsto & \left(q_{1}, \overline{q_{2}}\right) \\
\varphi_{2} & : & M_{2} & \longrightarrow & M_{1} \times M_{2} \\
& q_{2} & \longmapsto & \left(\overline{q_{1}}, q_{2}\right)
\end{array}
$$

where $\overline{q_{2}} \in M_{2}$ and $\overline{q_{1}} \in M_{1}$ are fixed. We have in the above notation:

$$
\begin{aligned}
& x_{1}^{\prime} \times x_{2}^{\prime} \circ \varphi_{1} \circ x_{1}^{-1}\left(p_{1}\right)=x_{1}^{\prime} \times x_{2}^{\prime}\left(x_{1}^{-1}\left(p_{1}\right), \overline{q_{2}}\right)=\left(x_{1}^{\prime} \circ x_{1}^{-1}\left(p_{1}\right), x_{2}^{\prime}\left(\overline{q_{2}}\right)\right), \\
& x_{1}^{\prime} \times x_{2}^{\prime} \circ \varphi_{2} \circ x_{2}^{-1}\left(p_{2}\right)=x_{1}^{\prime} \times x_{2}^{\prime}\left(\overline{q_{1}}, x_{2}^{-1}\left(p_{2}\right)\right)=\left(x_{1}^{\prime}\left(\overline{q_{1}}\right), x_{2}^{\prime} \circ x_{2}^{-1}\left(p_{2}\right)\right),
\end{aligned}
$$

where both are \mathcal{C}^{∞} since component-wise they are \mathcal{C}^{∞} since x_{2}^{\prime}, x_{2} and x_{1}^{\prime}, x_{1} are \mathcal{C}^{∞} related (they belong to the same atlas) and $x_{2}^{\prime}\left(\overline{q_{2}}\right), x_{1}^{\prime}\left(\overline{q_{1}}\right)$ are constant.
3. Show that a map $f: N \longrightarrow M_{1} \times M_{2}$ is smooth if and only if $\pi_{i} \circ f: N \longrightarrow M_{i}$, $i=1,2$, are smooth.
$\Rightarrow)$ As we noticed above, with the induced structure on $M_{1} \times M_{2}$ the projections are smooth. Hence using Exercise 3 in Homework 1, the composition of smooth functions is smooth (and f is smooth by hypothesis), thus $\pi_{i} \circ f: N \longrightarrow M_{i}$, $i=1,2$, are smooth.
$\Leftarrow)$ Use the above notation for charts of $M_{1} \times M_{2}$, and let (y, U) a chart of N (say onto \mathbb{R}^{n}). Consider:

$$
\begin{aligned}
x_{1} \times x_{2} \circ f \circ y^{-1} & =x_{1} \times x_{2} \circ\left(\left[\pi_{1} \circ f\right] \times\left[\pi_{2} \circ f\right]\right) \circ y^{-1} \\
& =\left(x_{1} \circ\left[\pi_{1} \circ f\right] \times x_{2} \circ\left[\pi_{2} \circ f\right]\right) \circ y^{-1} \\
& =\left(x_{1} \circ\left[\pi_{1} \circ f\right] \circ y^{-1} \times x_{2} \circ\left[\pi_{2} \circ f\right] \circ y^{-1}\right)
\end{aligned}
$$

that is \mathcal{C}^{∞} since component-wise it is \mathcal{C}^{∞} since composition of \mathcal{C}^{∞} functions is \mathcal{C}^{∞} (we have x_{1}, x_{2}, y diffeomorphisms and $\pi_{1} \circ f, \pi_{2} \circ f$ smooth by hypothesis).

Exercise 3

Consider the coordinate system y given by $\left(y^{1}, y^{2}\right)$ on \mathbb{R}^{2} defined by $y^{1}=a, y^{2}=a+b$. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be smooth. Notice how y^{-1} is given by $\left.\left(y^{-1}\right)^{1}=y^{1},\left(y^{-1}\right)^{2}=y^{2}-y^{1}\right)$. This also coincides with the components of I^{i} in terms of y^{j}, as is to be expected.

1. We compute $\partial f / \partial y^{1}$ from the definition: given $p \in \mathbb{R}^{2}$, we have:

$$
\begin{aligned}
\frac{\partial f}{\partial y^{1}}(p) & =D_{1}\left(f \circ y^{-1}\right)(y(p)) \\
& =D_{1}(f(p)) D_{1}\left(\left(y^{-1}\right)^{1}(y(p))\right)+D_{2}(f(p)) D_{1}\left(\left(y^{-1}\right)^{2}(y(p))\right) \\
& =\frac{\partial f}{\partial I^{1}}(p)-\frac{\partial f}{\partial I^{2}}(p)
\end{aligned}
$$

since $D_{1}(f(p))=\partial f / \partial I^{1}(p), D_{2}(f(p))=\partial f / \partial I^{2}(p), D_{1}\left(\left(y^{-1}\right)^{1}\right)=1, D_{1}\left(\left(y^{-1}\right)^{2}\right)=$ -1 (the last two in virtue of the expressions for y^{-1}).
2. Applying the desired result, we obtain:

$$
\frac{\partial f}{\partial y^{1}}(p)=\frac{\partial f}{\partial I^{1}}(p) \frac{\partial I^{1}}{\partial y^{1}}(p)+\frac{\partial f}{\partial I^{2}}(p) \frac{\partial I^{2}}{\partial y^{1}}(p)=\frac{\partial f}{\partial I^{1}}(p)-\frac{\partial f}{\partial I^{2}}(p)
$$

since clearly the differentiation of $\left(y^{-1}\right)^{1}$ and $\left(y^{-1}\right)^{2}$ with respect to y^{1} yield 1 and -1 respectively. For a general f and p, we clearly have that $\partial f / \partial y^{1}(p) \neq$ $\partial f / \partial I^{1}(p)$.

Exercise 4

Let $M(m, n)$ and $M(m, n ; k)$ denote the $m \times n$ matrices and the subset of rank k.

1. Let X_{0} have rank k, we want to prove the existence of permutation matrices P, Q so that $P X_{0} Q$ has the top left $k \times k$ matrix non-singular. Notice that multiplying by Q having a 1 in (i, j) sends the column i to the column j, and multiplying by P having a 1 in (i, j) sends the row j to the column i.
Since X_{0} having rank k means that there are k linearly independent columns, letting $X_{0}=\left(c_{1} \ldots c_{n}\right)$ be the form in columns, name them $c_{i_{1}}, \ldots, c_{i_{k}}$. Using Q we can send $c_{i_{j}}$ to the original position of c_{j} in X_{0} for $j=1, \ldots, k$. Since these changes are well defined, there are $n-k$ columns left to arrange and there are $n-k$ spots left in Q to fill with 1 , thus we can fill Q in such a way that it is a permutation matrix. Similarly, X_{0} having rank k means $X_{0} Q$ has rank k, thus there are k linearly independent rows, letting $X_{0} Q=\left(r_{1} \ldots r_{m}\right)^{T}$ be the form in rows, name them $r_{i_{1}}, \ldots, r_{i_{k}}$. Using P we can send $r_{i_{j}}$ to the original position of r_{j} in $X_{0} Q$ for $j=1, \ldots, k$. Since these changes are well defined, there are $m-k$ rows left to arrange and there are $m-k$ spots left in P to fill with 1 , thus we can fill P in such a way that it is a permutation matrix. Hence by this rearrangement, we have that $P X_{0} Q$ has the first k rows and the first k columns linearly independent, and if we call this A_{0}, we have $A_{0} \in M(k, k)$ with maximal rank, thus A_{0} is non-singular.
2. We know that $\operatorname{det}\left(A_{0}\right)=d \neq 0$, say $d>0$. We also know that the norm $\|\cdot\|_{\infty}$, that takes the maximum of the sums over the rows of the absolute values of the entries, is equivalent to the standard matrix norm (say the Euclidean norm $\|\cdot\|_{2}$). Since the determinant is a continuous function, for every $\delta>0$ there is an $\epsilon^{\prime}>0$ such that if $\left\|A-A_{0}\right\|_{\infty}<\epsilon^{\prime}$ then $\left|\operatorname{det}(A)-\operatorname{det}\left(A_{0}\right)\right|<\delta$. Choose $\delta=d / 2$, then there is an $\epsilon^{\prime}>0$ such that $\left|\operatorname{det}(A)-\operatorname{det}\left(A_{0}\right)\right|<d / 2$, that is, $0 \neq \operatorname{det}(A)$, in particular A is non-singular. Now the epsilon we want is $\epsilon=\epsilon^{\prime} / k$, since having all the entries of $A-A_{0}$ less than ϵ^{\prime} / k guarantees that $\left\|A-A_{0}\right\|_{\infty}<k \epsilon=\epsilon^{\prime}$ and thus A is non-singular.
3. Prove that X has rank k if and only if $D=C A^{-1} B$.
$\Leftarrow)$ We are given that X has a decomposition with $A \in M(k, k)$ non-singular and $D=C A^{-1} B$. Multiplying by the non-singular matrix as hinted using $Y=$ $-C A^{-1}$, we have that the rank is maintained. However, such multiplication yields $Y A+C=0$ and $Y B+C A^{-1} B=0$. Hence the rank of $P X Q$ is the rank of the $\operatorname{matrix}(A B) \in M(k, n)$, which is k since $A \in M(k, k)$ is non singular.
$\Rightarrow)$ Let $P X Q$ have rank k, multiplying by the non-singular matrix as hinted using $Y=-C A^{-1}$, we have that the rank is maintained. Since $Y A+C=0$, the rank is maintained if and only if $Y B+D=0$ (notice that here we heavily use that $Y B+D$ has zeroes at its left, hence having even one element non zero automatically increases the rank). This implies $D=-Y B=C A^{-1} B$, as desired.
4. Consider the function:

$$
\begin{aligned}
f: M(m, n) & \longrightarrow
\end{aligned} \quad M(m-k, n-k) .
$$

Notice that it sends the bottom right $(m-k) \times(n-k)$ matrix to itself, hence somewhere in the partial differential matrix we will have a (negative) identity of size $(m-k)(n-k)$. This implies that the rank is equal or greater than the dimension of the image $M(m-k, n-k)$, in particular 0 is a regular value. This means in virtue of the result we are said to use that $f^{-1}(0)$ is an $m n-(m-k)(n-k)=k(m+n-k)$ dimensional submanifold of $M(m, n)$. Since $f^{-1}(0)=M(m, n ; k)$ by the above, we obtain the desired result.

Exercise 5

Let M be a metric space, with \mathcal{C}^{∞} related homeomorphisms $x: U \longrightarrow \mathbb{R}^{n}$ covering M. We want to show that the n is invariant.

Since M is metric, there is a (continuous) distance function $d(\cdot, \cdot): M \times M \longrightarrow \mathbb{R}$. Let $p, q \in M$ such that $p \in U, p \in V$ and $x: U \longrightarrow \mathbb{R}^{n}, y: V \longrightarrow \mathbb{R}^{m}$. If $d(p, q)=0$, then $p=q$ and we may assume without loss of generality that $V \subset U$, thus x restricted to V is y and we have $n=m$. Suppose $d(p, q)=r>0$. The function $d_{p}(\cdot): M \longrightarrow[0, \infty)$ defined by $d_{p}(t)=d(p, t)$ is continuous because the distance is continuous. Consider $S=d_{p}^{-1}([0, r+\epsilon))$ for $\epsilon>0$, since $[0, r+\epsilon)$ is open in $[0, \infty)$ we have that S is open in M. This means that there is a homeomorphism $z: S \longrightarrow \mathbb{R}^{k}$ that is \mathcal{C}^{∞} related to the ones we had (actually, we can build it from those). Moreover, $q \in V \cap S \neq \emptyset$ and $p \in U \cap S \neq \emptyset$, thus $\mathbb{R}^{k} \cong z(V \cap S) \cong y(V \cap S) \cong \mathbb{R}^{m}$ and $\mathbb{R}^{k} \cong z(U \cap S) \cong x(U \cap S) \cong \mathbb{R}^{n}$, meaning that $m=k=n$, as desired.

