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Exercise 1

1. Show that the spherical coordinates are C∞ related to the identity in Rn. The
spherical coordinates are:

(r, θ1, . . . , θn−1) : (0,∞)× (0, π)× · · · × (0, π)× (0, 2π) −→ Rn

given by:

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,
...

xn−1 = r sin θ1 · · · sin θn−2 cos θn−1,

xn = r sin θ1 · · · sin θn−2 sin θn−1.

For simplicity of notation, we will denote the spherical coordinates by ψ. It is
enough to prove that ψ is C∞ related to the identity on an open subset of Rn.
For this, we first compute ψ−1. Note that squaring all the equations and solving
for r we clearly have that r =

√
x21 + · · ·+ x2n, hence we simply have to use that

sin(arccos(θ)) =
√

1− θ2 to solve the i-th equation for θi, i = 1, . . . , n−1, obtaining
that component-wise ψ−1 is given by:

r =
√
x21 + · · ·+ x2n,

θ1 = arccos

(
x1√

x21 + · · ·+ x2n

)
,

...

θn−1 = arccos

 xn−1√
x2n−1 + x2n

 .

Considering that the domain where the function arccos(θ) is defined is θ ∈ [−1, 1],
but we must have r > 0 (notice the importance of the strictly greater than 0 since
this will allow us to take an open), this means that we cannot take θ = 0. Hence
we choose to take:

ψ−1 : (0,∞)× · · · × (0,∞) −→ (0,∞)× (0, π/2)× · · · × (0, π/2),

notice that (0,∞) × · · · × (0,∞) is an open subset of Rn, and for {xi}ni=1 in the

domain we have that 0 < xi/
√
x2i + · · ·+ x2n < 1 for i = 1, . . . , n (notice again the

importance of the strict inequalities, which means that the arccos never touches 1
and thus it is C∞ in the domain). Hence the arccos lands in (0, π/2), and (0,∞)×
(0, π/2)× · · · × (0, π/2) is an open subset of (0,∞)× (0, π)× · · · × (0, π)× (0, 2π).
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Finally, both ψ ◦ id−1Rn and idRn ◦ ψ−1 are component-wise C∞ functions in their
domains (since they are composition of C∞ in their domains, in particular notice
how we chose the domains accordingly so that this is satisfied), hence ψ and idRn

are C∞ related, as we wanted to prove.

2. Show that the spherical coordinates are C∞ related to the stereographic projec-
tions. The spherical coordinates are:

(θ1, . . . , θn−1) : (0, π)× · · · × (0, π)× (0, 2π) −→ Sn−1 ⊂ Rn

given by:

x1 = cos θ1,

x2 = sin θ1 cos θ2,
...

xn−1 = sin θ1 · · · sin θn−2 cos θn−1,

xn = sin θ1 · · · sin θn−2 sin θn−1.

For simplicity of notation, we will denote the spherical coordinates by ϕ (is is
simply taking r = 1 in ψ). In virtue of Exercise 1 in Homework 1, it is enough to
prove that ϕ is C∞ related to f−1j defined by the functions (notice how we would
“expect” ϕ to be related directly to fj , but this is impossible since the domain and
target do not coincide):

f : Sn−1 ∩ {x ∈ Rn : xi > 0} −→ Rn−1

(x1, . . . , xn) 7−→ (x1, . . . , xi−1, xi+1, . . . , xn),

for i = 1, . . . , n on an open subset of Rn. Recall that:

f−1j : Rn−1 −→ Sn−1 ∩ {x ∈ Rn : xi > 0}
(X1, . . . , X̂j , . . . , Xn−1) 7−→

(
X1, . . . ,

√
1−X2

1 − · · · −X2
n−1, . . . , Xn−1

)
.

We know by the above that component-wise ϕ−1 is given by:

θ1 = arccos

(
x1√

x21 + · · ·+ x2n

)
,

...

θn−1 = arccos

 xn−1√
x2n−1 + x2n

 .

and we choose to take:

ϕ−1 : (0,∞)× · · · × (0,∞) −→ (0, π/2)× · · · × (0, π/2),
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where by the reasoning above we have that (0,∞)× · · · × (0,∞) is an open subset
of Rn−1 and (0, π/2)×· · ·×(0, π/2) is an open subset of (0, π)×· · ·×(0, π)×(0, 2π).

Notice how ϕ ◦ fj is well defined since fj(S
n−1 ∩ {x ∈ Rn : xi > 0}) ⊂ (0, 1) ×

· · · × (0, 1) ⊂ (0, π) × · · · × (0, π) × (0, 2π), hence we can apply ϕ. This is a C∞
function because component-wise it is a composition of C∞ functions (as usual, in
their domains).

Moreover, notice how we need to restrict the domain to make f−1j ◦ ϕ−1 well
defined. To do this, we start by determining values for xn, say xn ∈ (1, 2). Looking
at the expression for θn−1 and imposing 0 < θn−1 < 1, we can find for each xn
an interval where xn−1 is defined. Since the equation determining this interval is
continuous, we obtain an open rectangle where θn−1 behaves as desired. Repeating
this process (notice how we essentially use that we can solve the equation θ =

arccos
(
x/
√
x2 + y2

)
for x given y), we obtain an open domainD ⊂ Rn−1 such that

ϕ−1(D) ⊂ (0, 1)×· · ·×(0, 1), hence we can apply f−1j . This is a C∞ function because
component-wise it is a composition of C∞ functions (again, in their domains).
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Exercise 2

Let M1, M2 be smooth manifolds, we equip M1 ×M2 with the smooth structure given
by product of charts: for (x1, U1) and (x2, U2) charts of M1 and M2 respectively, we
determine that x1×x2 : U1×U2 −→ Rm1+m2 defined by x1×x2(p1, p2) = (x1(p1), x2(p2))
are in our atlas. Notice how this automatically makes the projections πi : M1 ×M2 −→
Mi for i = 1, 2 smooth.

1. Show that M1 × M2 is diffeomorphic to M2 × M1. For this, consider the map
f : M1 ×M2 −→ M2 ×M1 given by f(p1, p2) = (p2, p1). This clearly bijective
having as inverse g : M2 ×M1 −→ M1 ×M2 given by g(p2, p1) = (p1, p2). Both f
and g are obviously continuous, since given U1 ⊂M1 and U2 ⊂M2 opens, we have
that for the basic opens: f−1(U2×U1) = U1×U2 and g−1(U1×U2) = U2×U1, both
open in M1 ×M2 and M2 ×M1 respectively. Thus f is a homeomorphism. Now,
consider (x1, U1), (x2, U2) and (x′2, U

′
2), (x′1, U

′
1) determining charts of M1 ×M2

and M2 ×M1 respectively. For (p1, p2) ∈ Rm1 × Rm2 we have:

x′2 × x′1 ◦ f ◦ (x1 × x2)−1(p1, p2) = x′2 × x′1 ◦ f ◦ x−11 × x
−1
2 (p1, p2)

= x′2 × x′1 ◦ x−12 × x
−1
1 (p2, p1)

= x′2 ◦ x−12 × x
′
1 ◦ x−11 (p2, p1),

x1 × x2 ◦ g ◦ (x′2 × x′1)−1(p2, p1) = x1 × x2 ◦ g ◦ (x′2)
−1 × (x′1)

−1(p2, p1)

= x1 × x2 ◦ (x′1)
−1 × (x′2)

−1(p1, p2)

= x1 ◦ (x′1)
−1 × x2 ◦ (x′2)

−1(p1, p2),

where both are C∞ since component-wise they are C∞ since x′2, x2 and x′1, x1 are
C∞ related (they belong to the same atlas). This means that f and g are both
smooth, thus f is a diffeomorphism, as desired.

2. Show that the slice maps are differentiable:

ϕ1 : M1 −→ M1 ×M2

q1 7−→ (q1, q2)

ϕ2 : M2 −→ M1 ×M2

q2 7−→ (q1, q2)

where q2 ∈M2 and q1 ∈M1 are fixed. We have in the above notation:

x′1 × x′2 ◦ ϕ1 ◦ x−11 (p1) = x′1 × x′2(x−11 (p1), q2) = (x′1 ◦ x−11 (p1), x
′
2(q2)),

x′1 × x′2 ◦ ϕ2 ◦ x−12 (p2) = x′1 × x′2(q1, x−12 (p2)) = (x′1(q1), x
′
2 ◦ x−12 (p2)),

where both are C∞ since component-wise they are C∞ since x′2, x2 and x′1, x1 are
C∞ related (they belong to the same atlas) and x′2(q2), x

′
1(q1) are constant.
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3. Show that a map f : N −→ M1 ×M2 is smooth if and only if πi ◦ f : N −→ Mi,
i = 1, 2, are smooth.

⇒) As we noticed above, with the induced structure on M1 ×M2 the projections
are smooth. Hence using Exercise 3 in Homework 1, the composition of smooth
functions is smooth (and f is smooth by hypothesis), thus πi ◦ f : N −→ Mi,
i = 1, 2, are smooth.

⇐) Use the above notation for charts of M1×M2, and let (y, U) a chart of N (say
onto Rn). Consider:

x1 × x2 ◦ f ◦ y−1 = x1 × x2 ◦ ([π1 ◦ f ]× [π2 ◦ f ]) ◦ y−1

= (x1 ◦ [π1 ◦ f ]× x2 ◦ [π2 ◦ f ]) ◦ y−1

= (x1 ◦ [π1 ◦ f ] ◦ y−1 × x2 ◦ [π2 ◦ f ] ◦ y−1),

that is C∞ since component-wise it is C∞ since composition of C∞ functions is C∞
(we have x1, x2, y diffeomorphisms and π1 ◦ f , π2 ◦ f smooth by hypothesis).
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Exercise 3

Consider the coordinate system y given by (y1, y2) on R2 defined by y1 = a, y2 = a+ b.
Let f : R2 −→ R be smooth. Notice how y−1 is given by (y−1)1 = y1, (y−1)2 = y2− y1).
This also coincides with the components of Ii in terms of yj , as is to be expected.

1. We compute ∂f/∂y1 from the definition: given p ∈ R2, we have:

∂f

∂y1
(p) = D1(f ◦ y−1)(y(p))

= D1(f(p))D1((y
−1)1(y(p))) +D2(f(p))D1((y

−1)2(y(p)))

=
∂f

∂I1
(p)− ∂f

∂I2
(p),

sinceD1(f(p)) = ∂f/∂I1(p), D2(f(p)) = ∂f/∂I2(p), D1((y
−1)1) = 1, D1((y

−1)2) =
−1 (the last two in virtue of the expressions for y−1).

2. Applying the desired result, we obtain:

∂f

∂y1
(p) =

∂f

∂I1
(p)

∂I1

∂y1
(p) +

∂f

∂I2
(p)

∂I2

∂y1
(p) =

∂f

∂I1
(p)− ∂f

∂I2
(p),

since clearly the differentiation of (y−1)1 and (y−1)2 with respect to y1 yield 1
and −1 respectively. For a general f and p, we clearly have that ∂f/∂y1(p) 6=
∂f/∂I1(p).
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Exercise 4

Let M(m,n) and M(m,n; k) denote the m× n matrices and the subset of rank k.

1. Let X0 have rank k, we want to prove the existence of permutation matrices P , Q
so that PX0Q has the top left k× k matrix non-singular. Notice that multiplying
by Q having a 1 in (i, j) sends the column i to the column j, and multiplying by
P having a 1 in (i, j) sends the row j to the column i.

Since X0 having rank k means that there are k linearly independent columns,
letting X0 = (c1 . . . cn) be the form in columns, name them ci1 , . . . , cik . Using Q
we can send cij to the original position of cj in X0 for j = 1, . . . , k. Since these
changes are well defined, there are n − k columns left to arrange and there are
n − k spots left in Q to fill with 1, thus we can fill Q in such a way that it is a
permutation matrix. Similarly, X0 having rank k means X0Q has rank k, thus
there are k linearly independent rows, letting X0Q = (r1 . . . rm)T be the form in
rows, name them ri1 , . . . , rik . Using P we can send rij to the original position of rj
in X0Q for j = 1, . . . , k. Since these changes are well defined, there are m−k rows
left to arrange and there are m−k spots left in P to fill with 1, thus we can fill P in
such a way that it is a permutation matrix. Hence by this rearrangement, we have
that PX0Q has the first k rows and the first k columns linearly independent, and if
we call this A0, we have A0 ∈M(k, k) with maximal rank, thus A0 is non-singular.

2. We know that det(A0) = d 6= 0, say d > 0. We also know that the norm || · ||∞,
that takes the maximum of the sums over the rows of the absolute values of the
entries, is equivalent to the standard matrix norm (say the Euclidean norm || · ||2).
Since the determinant is a continuous function, for every δ > 0 there is an ε′ > 0
such that if ||A − A0||∞ < ε′ then |det(A) − det(A0)| < δ. Choose δ = d/2, then
there is an ε′ > 0 such that | det(A) − det(A0)| < d/2, that is, 0 6= det(A), in
particular A is non-singular. Now the epsilon we want is ε = ε′/k, since having all
the entries of A−A0 less than ε′/k guarantees that ||A−A0||∞ < kε = ε′ and thus
A is non-singular.

3. Prove that X has rank k if and only if D = CA−1B.

⇐) We are given that X has a decomposition with A ∈ M(k, k) non-singular
and D = CA−1B. Multiplying by the non-singular matrix as hinted using Y =
−CA−1, we have that the rank is maintained. However, such multiplication yields
Y A + C = 0 and Y B + CA−1B = 0. Hence the rank of PXQ is the rank of the
matrix (AB) ∈M(k, n), which is k since A ∈M(k, k) is non singular.

⇒) Let PXQ have rank k, multiplying by the non-singular matrix as hinted using
Y = −CA−1, we have that the rank is maintained. Since Y A + C = 0, the
rank is maintained if and only if Y B+D = 0 (notice that here we heavily use that
Y B+D has zeroes at its left, hence having even one element non zero automatically
increases the rank). This implies D = −Y B = CA−1B, as desired.
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4. Consider the function:

f : M(m,n) −→ M(m− k, n− k).(
A B
C D

)
7−→ CA−1B −D

Notice that it sends the bottom right (m − k) × (n − k) matrix to itself, hence
somewhere in the partial differential matrix we will have a (negative) identity of
size (m−k)(n−k). This implies that the rank is equal or greater than the dimension
of the image M(m−k, n−k), in particular 0 is a regular value. This means in virtue
of the result we are said to use that f−1(0) is an mn−(m−k)(n−k) = k(m+n−k)
dimensional submanifold of M(m,n). Since f−1(0) = M(m,n; k) by the above, we
obtain the desired result.
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Exercise 5

Let M be a metric space, with C∞ related homeomorphisms x : U −→ Rn covering M .
We want to show that the n is invariant.

Since M is metric, there is a (continuous) distance function d(·, ·) : M ×M −→ R.
Let p, q ∈ M such that p ∈ U , p ∈ V and x : U −→ Rn, y : V −→ Rm. If d(p, q) = 0,
then p = q and we may assume without loss of generality that V ⊂ U , thus x restricted to
V is y and we have n = m. Suppose d(p, q) = r > 0. The function dp(·) : M −→ [0,∞)
defined by dp(t) = d(p, t) is continuous because the distance is continuous. Consider
S = d−1p ([0, r + ε)) for ε > 0, since [0, r + ε) is open in [0,∞) we have that S is open

in M . This means that there is a homeomorphism z : S −→ Rk that is C∞ related to
the ones we had (actually, we can build it from those). Moreover, q ∈ V ∩ S 6= ∅ and
p ∈ U∩S 6= ∅, thus Rk ∼= z(V ∩S) ∼= y(V ∩S) ∼= Rm and Rk ∼= z(U∩S) ∼= x(U∩S) ∼= Rn,
meaning that m = k = n, as desired.
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