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Exercise 1

Let M an n dimensional manifold, p ∈ M . Consider Cp = {α : R −→ M : α(0) = p}.
We say that two curves α1, α2 ∈ Cp are equivalent if for all charts (x, U) of M around
p we have (x ◦ α1)

′(0) = (x ◦ α2)
′(0). Denote by Cp the space of equivalence classes of

curves in Cp.

1. Cp can be made into a vector space. First, for α ∈ Cp, we will use the notation

α′(0) for the equivalence class of α in Cp, that is, α′(0) = d(x ◦ α)(0)/dt. Moreover,
notice that we can define a multiplication by scalars in Cp since for a curve α ∈ Cp
and r ∈ R we can set rα : R −→ M given by (rα)(t) = α(rt) = (α ◦mr)(t) where
mr(t) = rt, notice how (rα)(0) = p. By the chain rule, notice how this means:

d(x ◦ (rα))

dt
(0) =

d(x ◦ α)

dt
(mr(0))

dmr

dt
(0) = r

d(x ◦ α)

dt
(0) =⇒ (rα)′(0) = rα′(0)

hence we define for α, β ∈ Cp and r ∈ R:

(α+ β)′(0) = α′(0) + β′(0), (rα)′(0) = rα′(0),

both of which are well defined since α′(0), β′(0) ∈ Rn, r ∈ R. Now, we can readily
check that equipped with these operations, Cp satisfies all the axioms of R vector
spaces:

(a) For α, β, γ ∈ Cp we have α′(0) + (β′(0) + γ′(0)) = (α′(0) + β′(0)) + γ′(0).

(b) For α, β ∈ Cp we have α′(0) + β′(0) = β′(0) + α′(0).

(c) The map p : R −→ M given by p(r) = p for every r ∈ R clearly belongs to
Cp. Moreover, for any chart (x, U) of M around p we have (x ◦ p)(r) = x(p)
for every r ∈ R, thus x ◦ p = 0 as a function, hence p′(0) = 0. This means
that for any α ∈ Cp we have α′(0) + p′(0) = α′(0) = p′(0) + α′(0).

(d) Given α ∈ Cp, we have −α′(0) = (−α)′(0) ∈ Cp, with α′(0) + (−α)′(0) =
p′(0) = (−α)′(0) + α′(0).

(e) For r, s ∈ R and α ∈ Cp we have (r(sα))′(0) = r(sα)′(0) = rsα′(0) =
((rs)α)′(0).

(f) Clearly (1α)′(0) = α′(0).

(g) For r ∈ R and α, β ∈ Cp we have (r(α + β))′(0) = r(α + β)′(0) = rα′(0) +
rβ′(0) = (rα)′(0) + (rβ)′(0).

(h) For rs ∈ R and α ∈ Cp we have ((r+s)α)′(0) = (r+s)α′(0) = rα′(0)+rβ′(0) =
(rα)′(0) + (rβ)′(0).

Notice how although it may seem obvious from the definition, there is actually
something to check, and the verification that the notation α′(0) for the class of
α ∈ Cp behaves well is key factor for the computations that we made.

2



2. Compute the dimension of Cp. For this, we will use the obvious map:

ψ : Cp −→ Rn
α′(0) 7−→ d(x ◦ α)(0)/dt

where (x, U) is any chart of M around p. Notice that even if this may seem
redundant and an even an abuse of notation, this is perfectly well defined: given
α, β ∈ Cp with α′(0) = β′(0), this means d(x ◦ α)(0)/dt = d(x ◦ β)(0)/dt by
construction of Cp.
Clearly ψ is linear since the differentiation is linear (hence behaves well on the
sums), and we already checked in the part above that by the chain rule the notation
is well behaved with respect to multiplication by elements r ∈ R.

Moreover, by this construction, ψ is clearly injective, since having for α, β ∈ Cp
that d(x◦α)(0)/dt = d(x◦β)(0)/dt for a chart (x, U) of M around p means by the
compatibility conditions that this is true for all such charts, hence α′(0) = β′(0).

To prove surjectivity, let (x, U) be a chart ofM around p, suppose x(p) = (p1, . . . , pn)
since M has dimension n. Define:

αi : R −→ M
r 7−→ x−1(p1, . . . , pi + r, . . . , pn)

we now have that:

x ◦ αi : R −→ Rn
r 7−→ (p1, . . . , pi + r, . . . , pn)

and clearly d(x ◦ αi)(0)dt = (0, . . . , 1, . . . , 0) where the 1 is in the i-th component.
Thus any element in Rn may be written as a linear combination of d(x ◦ αi)(0)dt
which comes from a linear combination of α′i(0) via ψ, meaning that ψ is surjective.

Hence Cp has the same dimension as Rn, that is, n.
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Exercise 2

With the notation as above, we consider Dp = {l : C∞(M) −→ R : l is linear and l(fg) =
f(p)l(g) + g(p)l(f)}.

1. Show that the map Cp −→ Dp given by α 7−→ lα with for f : M −→ R smooth:

lα(f) =
d(f ◦ α)

dt
(0)

descends to a map Cp −→ Dp that is injective.

We first observe that the map descends, that is, given a chart (x, U) of M around p
and α, β ∈ Cp with α′(0) = β′(0), we want to see that lα = lβ. Now for f : M −→ R
smooth:

lα(f) =
d(f ◦ α)

dt
(0) =

d(f ◦ x−1 ◦ x ◦ α)

dt
(0) = (f ◦ x−1)′(x ◦ α(0))

d(x ◦ α)

dt
(0)

= (f ◦ x−1)′(x ◦ α(0))
d(x ◦ β)

dt
(0) =

d(f ◦ x−1 ◦ x ◦ β)

dt
(0) =

d(f ◦ β)

dt
(0)

= lβ(f)

where we have used that d(x ◦ α)(0)/dt = d(x ◦ β)(0)/dt.

For injectivity, suppose we have α′(0), β′(0) with lα = lβ. This means that lα(f) =
lβ(f) for every f ∈ C∞(M). In particular taking xi : M −→ R the i-th component
of the chart (x, U), that is, xi = πi ◦ x, we have that:

lα(xi) =
d(xi ◦ α)

dt
(0) =

d(πi ◦ x ◦ α)

dt
(0) = (πi)

′(x ◦ α(0))
d(x ◦ α)

dt
(0),

lβ(xi) =
d(xi ◦ β)

dt
(0) =

d(πi ◦ x ◦ β)

dt
(0) = (πi)

′(x ◦ β(0))
d(x ◦ β)

dt
(0).

Now, notice that by the definition of πi, we have that (πi)
′ = (0, . . . , 1, . . . , 0) where

the 1 is in the i-th component. Hence on the right hand side of the equations above
we have the i-th component of d(x◦α)(0)/dt and d(x◦β)(0)/dt. Since the equality
holds for every i = 1, . . . , n, this results in d(x ◦ α)(0)/dt = d(x ◦ β)(0)/dt hence
α′(0) = β′(0), proving injectivity.

2. To show that this map is in fact an isomorphism, we will prove that it is linear.
Notice how this suffices because by Theorem 3 on Page 79 of Spivak’s coursebook,
the space of derivations Dp has dimension n, and an injective morphism between
vector spaces is automatically an isomorphism. Now, for α, β ∈ Cp, r ∈ R and
f ∈ C∞(M) we have that:

l(α+ β)(f) =
d(f ◦ (α+ β))

dt
=
d(f ◦ α+ f ◦ β))

dt
=
d(f ◦ α)

dt
+
d(f ◦ β))

dt
= lα(f) + lβ(f) = (lα + lβ)(f)
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and:

lrα(f) =
d(f ◦ (rα))

dt
(0) =

d(f ◦ x−1 ◦ x ◦ (rα))

dt
(0)

= (f ◦ x−1)′(x ◦ (rα)(0))
d(x ◦ (rα))

dt
(0)

= (f ◦ x−1)′(x ◦ α(0))r
d(x ◦ α)

dt
(0) = r

d(f ◦ x−1 ◦ x ◦ α)

dt
(0) = rlα(f)

proving the desired linearity (notice how we used again verifications from the ex-
ercise above).
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Exercise 3

Let f : M −→ N be with the dimensions of M and N being n and m respectively.

1. Show that the map f∗ : Cp −→ Cf(p) given by f∗(α) = f ◦ α descends to a map

f∗ : Cp −→ Cf(p) that is linear. First, we show that it indeed descends, for α, β ∈ Cp
with α′(0) = β′(0) we have for any charts (x, U) of M around p and (y, V ) of N
around f(p) that:

d(y ◦ f ◦ α)

dt
(0) =

d(y ◦ f ◦ x−1 ◦ x ◦ α)

dt
= (y ◦ f ◦ x−1)′(x ◦ α(0))

d(x ◦ α)

dt
(0)

= (y ◦ f ◦ x−1)′(x ◦ α(0))
d(x ◦ β)

dt
(0) =

d(y ◦ f ◦ x−1 ◦ x ◦ β)

dt

=
d(y ◦ f ◦ β)

dt
(0),

hence (f∗(α))′(0) = (f∗(β))′(0) in Cf(p), since clearly f∗(α)(0) = f(α(0)) = f(p) =
f(β(0)) = f∗(β)(0). For linearity, let α, β ∈ Cp, r ∈ R, now:

f∗(α
′(0) + β′(0)) = f∗((α+ β)′(0)) = f∗(α+ β)′(0) = (f ◦ (α+ β))′(0)

= (f ◦ α)′(0) + (f ◦ β)′(0) = f∗(α)′(0) + f∗(β)′(0)

= f∗(α
′(0)) + f∗(β

′(0))

notice how we have used that we have proven in the exercises above that the classes
in Cf(p) behave well under composition, addition and sums. Moreover:

f∗((rα)′(0)) = f∗(rα)′(0) = (f ◦ (rα))′(0)

rf∗(α
′(0)) = r(f ◦ α)′(0)

where the right hand side of the last two equations is equal (as classes in Cf(p))
since we have proven in the exercise above that d(f ◦(rα))(0)/dt = rd(f ◦α)(0)/dt.
This is what we desired.

2. Show that the map Dp −→ Df(p) given by f∗(l)(g) = l(g ◦ f) is a linear transfor-
mation. For this, given l, k ∈ Dp and g ∈ C∞(N), we have:

f∗(l + k)(g) = (l + k)(g ◦ f) = l(g ◦ f) + k(g ◦ f) = f∗(l)(g) + f∗(k)(g)

and:
f∗(rl)(g) = (rl)(g ◦ g) = rl(g ◦ f) = rf∗(l)(g),

hence the map is linear.

3. If iM : Cp −→ Dp, iN : Cf(p) −→ Df(p) are the isomorphisms in the previous

problem, show that f∗ ◦ iM = iN ◦ f∗. For this, let α ∈ Cp, g ∈ C∞(N), we have:

(f∗ ◦ iM )(α′(0))(g) = (f∗ ◦ lα)(g) = f∗(lα)(g) = lα(g ◦ f) =
d(g ◦ f ◦ α)

dt
(0)

(iN ◦ f∗)(α′(0))(g) = (iN ((f ◦ α)′(0)))(g) = lf◦α(g) =
d(g ◦ f ◦ α)

dt
(0),
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which is an equality for any two input arguments, proving that (f∗ ◦ iM )(α′(0)) =
(iN ◦ f∗)(α′(0)) as elements of Df(p), hence f∗ ◦ iM = iN ◦ f∗ as functions.
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Exercise 4

1. Let iV : V −→ V be the isomorphism given by iV (v)(λ) = λ(v) for v ∈ V . Show
that for any linear transformation f : V −→ W we have that f∗∗ ◦ iV = iW ◦ f .
To prove this, let v ∈ V and w ∈W ∗, now:

(f∗∗ ◦ iV )(v)(w) = f∗∗(iV (v))(w) = iV (v)(f∗(w)) = f∗(w)(v) = w(f(v))

(iW ◦ f)(v))(w) = iW (f(v))(w) = w(f(v))

where we have simply used the definition of dual function. Since both right hand
sides are the same, for any v ∈ V and w ∈W ∗, we indeed have that f∗∗◦iV = iW ◦f .

2. Show that there are no isomorphisms iV : V −→ V ∗ and iW : W −→ W ∗ so that
iV = f∗ ◦ iW ◦f . Consider the case V = W = R and f : R −→ R given by f(r) = 0
for every r ∈ R. Now f∗ : W ∗ −→ V ∗ sends everything to the zero function by
linearity: for every λ ∈ W ∗ and v ∈ V we have f∗(λ)(v) = λ(f(v)) = λ(0) = 0.
This cannot be an isomorphism, hence iV cannot be an isomorphism if we want
the diagram to commute.

This example is immediately generalized to arbitrary vector spaces by using as f
the function that sends everything to zero.
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Exercise 5

1. Consider the space [0, 1]×Rn identifying (0, v) with (1, T (v)) where T : Rn −→ Rn
is an isomorphism of vector spaces. We show that this can be made into the total
space of a vector bundle over S1. For this, define:

π : [0,1]×Rn

(0,v)∼(1,T (v)) −→
[0,1]
0∼1

(t, v) 7−→ t

which will be our projection map. That is, we have:

(a) E = [0,1]×Rn

(0,v)∼(1,T (v)) , B = S1.

(b) π : E −→ B as above.

(c) π−1(t) = {t} × Rn.

(d) For t ∈ S1, any open containint t must contain either (t − ε, t + ε) ⊂ S1 if
0 < t < 1 or [0, ε) ∪ (1 − ε, 1] ⊂ S1 if t = 0, 1, in both cases for ε > 0 small
enough. Hence we can define as charts the natural inclusion (t− ε, t+ ε) ⊂ R
in the first case and for the second:

ϕ : [0, ε) ∪ (1− ε, 1] −→ (−ε, ε) ⊂ R
[0, ε) 3 t 7−→ t

(1− ε, 1] 3 t 7−→ t− 1

notice how this is well defined (it is even an isomorphism onto its image) by
the Gluing Lemma. Hence on E we have the induced charts which are the
natural inclusion (t − ε, t + ε) × Rn ⊂ R × Rn in the first case and for the
second:

ϕ̃ : ([0,ε)∪(1−ε,1])×Rn

(0,v)∼(0,T (v)) −→ R× Rn

{1, 0} × Rn 3 (t, v) 7−→ (0, v)
[0, ε)× Rn 3 (t, v) 7−→ (t, v)

(1− ε, 1]× Rn 3 (t, v) 7−→ (t− 1, v)

where we obviously have π ◦ ϕ̃ = ϕ ◦ π.

2. Now, π : E −→ B is orientable if and only if we can define a collection of orien-
tations on each π−1(t) for t ∈ S1. When t 6= 0, 1 we have that everything is the
trivial bundle, hence we have the standard orientation on each of the fibers (recall
that the standard orientation is orientation preserving). For π−1(0) = π−1(1) we
have that the transformation T is compatible, by definition of E, with the standard
orientation. However, this means that the collection of orientations is well defined
if and only if T is orientation preserving, since otherwise we would have that the
standard orientation, which is orientation preserving, would be compatible with
an orientation reversing map, which is a contradiction.
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