Differential Geometry I - Homework 4

Pablo Sánchez Ocal
February 20th, 2017

Exercise 1

Let (x, U) and (y, V) be two charts on a manifold $M, p \in U \cap V$ and thus $y_{*} \circ\left(x_{*}\right)^{-1}$: $x(U \cap V) \times \mathbb{R}^{n} \longrightarrow y(U \cap V) \times \mathbb{R}^{n}$ is a smooth diffeomorphism. We want to show that its Jacobian matrix is:

$$
D\left(y_{*} \circ\left(x_{*}\right)^{-1}\right)=\left(\begin{array}{cc}
D_{j}\left(y_{*}^{i} \circ\left(x_{*}\right)^{-1}\right) & 0 \\
X & D_{j}\left(y_{*}^{i} \circ\left(x_{*}\right)^{-1}\right)
\end{array}\right) .
$$

For this, we will reason in each of the three relevant $n \times n$ square matrices that form $D\left(y_{*} \circ\left(x_{*}\right)^{-1}\right)$:

1. Top left: first, notice how $\left(y_{*} \circ\left(x_{*}\right)^{-1}\right)^{i}=y_{*}^{i} \circ\left(x_{*}\right)^{-1}$ since the only possible way to take components is when we land in $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Hence since $y_{*}=\pi^{-1} \circ y \circ \pi$ we have that $y_{*}^{i}=y^{i}$ for the first $i=1, \ldots, n$ components, thus $\left(y_{*} \circ\left(x_{*}\right)^{-1}\right)^{i}=y^{i} \circ x^{-1}$ since we are simply restricting us to the function from $x(U \cap V)$ to $y(U \cap V)$. Thus the corresponding matrix is simply the Jacobian of $y \circ x^{-1}$, that is, $\left(D_{j}\left(y^{i} \circ x^{-1}\right)\right)_{i, j}$.
2. Top right: this is the $i \times j$ submatrix with $i<n$ and $j>n$, which shows the change in $y(U \cap V)$ given by changes in \mathbb{R}^{n} maintaining $x(U \cap V)$ fixed. Notice how for a point $(u, v) \in x(U \cap V) \times \mathbb{R}^{n}$, changes in v the second n-tuple, that is, changes in \mathbb{R}^{n}, do not affect the base point in $T M$ to which it corresponds: we are moving on the fiber, but the base point is determined by u hence remains the same. This means that the first n-tuple of $y(U \cap V) \times \mathbb{R}^{n}$, which controls the base points, is not affected by changes of v. This, by definition, means that the partial derivatives with respect to the second n-tuple are zero thus, as we desired, the matrix has all entries zero: $\partial\left(\left(y_{*} \circ\left(x_{*}\right)^{-1}\right)^{i}\right) / \partial I_{j}=0$ for $i, j=1, \ldots, n$ (with the notation of $\left\{I_{i}\right\}_{i=1}^{n}$ for the coordinates of \mathbb{R}^{n} in $\left.x(U \cap V) \times \mathbb{R}^{n}\right)$.
3. Bottom right: this part of the matrix is the restriction of $y_{*} \circ\left(x_{*}\right)^{-1}$ to the second n-tuple, that is, a function from \mathbb{R}^{n} to \mathbb{R}^{n}. Hence what we have is an isomorphism from writing \mathbb{R}^{n} in the coordinates given by x to writing \mathbb{R}^{n} in the coordinates given by y, thus the Jacobian is just the corresponding change of basis matrix, that is, $\left(D_{j}\left(y^{i} \circ x^{-1}\right)\right)_{i, j}$.

Exercise 2

Let M a manifold, $p \in M$ (say of dimension n). We denote $\mathcal{I}_{p}=\left\{f \in \mathcal{C}^{\infty}(M ; \mathbb{R})\right.$: $f(p)=0\}$ thus:

$$
\mathcal{I}_{p}^{2}=\left\{\sum_{j=1}^{k} f_{j} g_{j}: f_{j}, g_{j} \in I_{p} \text { for } i=1, \ldots, k\right\}
$$

1. The map $i: \mathcal{I}_{p} \longrightarrow T_{p}^{*} M$ defined by $i(f)(v)=v(f)$ for $v \in T_{p} M$ is linear. For this, we just have to verify (abusing that a derivation is \mathbb{R}-linear) that for $f, g \in \mathcal{I}_{p}$ and $r \in \mathbb{R}$:
(a) $i(f+g)(v)=v(f+g)=v(f)+v(g)=i(f)(v)+i(g)(v)$,
(b) $i(r f)(v)=v(r f)=r v(f)=r i(f)(v)$.
2. Show that $\operatorname{ker}(i)=\mathcal{I}_{p}^{2}$, thus $\bar{i}: \mathcal{I}_{p} / \mathcal{I}_{p}^{2} \longrightarrow T_{p}^{*} M$ is an injection. We prove both inclusions:
$\subseteq)$ Let $f \in \operatorname{ker}(i)$, that is, $0=i(f)(v)=v(f)$ for every $v \in T_{p} M$. In particular, applying this to $\partial / \partial x_{i}, \ldots, \partial / \partial x_{n}$ a basis of $T_{p} M$, we obtain that to $\partial f(p) / \partial x_{i}=0$ for every $i=1, \ldots, n$. Consider now [1, Theorem A. 58 (p.587)] the multivariate Taylor expansion of f near p given by a local chart (x, U), that is, for $q \in U$ we have:

$$
\begin{aligned}
f(q) & =f(p)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p)\left(x_{i}(q)-x_{i}(p)\right)+\sum_{i=1}^{n} g_{i}(q)\left(x_{i}(q)-x_{i}(p)\right) \\
& =\sum_{i=1}^{n} g_{i}(q)\left(x_{i}(q)-x_{i}(p)\right)
\end{aligned}
$$

with $g_{1}, \ldots, g_{n} \in \mathcal{C}^{\infty}(M ; \mathbb{R})$ with $g_{i}(p)=0$ for every $i=1, \ldots, n$. Now, clearly $g_{i} \in \mathcal{I}_{p}$ and $(x(q)-x(p)) \in \mathcal{I}_{p}$, thus $f \in \mathcal{I}_{p}^{2}$ as desired.
〇) Let $f \in \mathcal{I}_{p}^{2}$, that is, $f=\sum_{j=1}^{k} f_{j} g_{j}$ with $f_{j}, g_{j} \in I_{p}$ for $j=1, \ldots, k$. Now for any $v \in T_{p} M$:

$$
i(f)(v)=v(f)=v\left(\sum_{j=1}^{k} f_{j} g_{j}\right)=\sum_{j=1}^{k} v\left(f_{j} g_{j}\right)=\sum_{j=1}^{k} v\left(f_{j}\right) g_{j}(p)+f_{j}(p) v\left(g_{j}\right)=0
$$

since $f_{j}(p)=0=g_{j}(p)$, thus $f \in \operatorname{ker}(i)$.
3. Show that $\bar{i}: \mathcal{I}_{p} / \mathcal{I}_{p}^{2} \longrightarrow T_{p}^{*} M$ is an isomorphism. Given the above, we know that \bar{i} is a morphism and an injection, hence we just have to prove that it is a surjection. For this, given a linear function $w: T_{p} M \longrightarrow \mathbb{R}$, it is enough to find an element $f \in \mathcal{I}_{p}$ such that $i(f)(v)=w(v)$ for every $v \in T_{p} M$ (since then taking the class \bar{f}
of f in $\mathcal{I}_{p} / \mathcal{I}_{p}^{2}$ we find that $\left.\bar{i}(\bar{f})=w\right)$. Since for a chart (x, U) with $p \in U$ we have that $\partial / \partial x_{i}, \ldots, \partial / \partial x_{n}$ is a basis of $T_{p} M$, we have (and impose) that:

$$
w^{i}=w\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial f(p)}{\partial x_{i}} \text { for } i=1, \ldots, n
$$

thus defining $f(q)=\sum_{i=1}^{n} w^{i}\left(x_{i}(q)-x_{i}(p)\right)$ for $q \in U$ we obtain that $f(p)=0$ and f is a smooth function with derivatives $\partial f(p) / \partial x_{i}=w^{i}$ for $i=1, \ldots, n$. Thus $f \in \mathcal{I}_{p}$ and $i(f)=w$ as desired.

Exercise 3

Let $f: M^{n} \longrightarrow N^{m}$ be smooth and let $(x, U),(y, V)$ be coordinate systems around p, $f(p)$ respectively.

1. For $g: N \longrightarrow \mathbb{R}$ we have that:

$$
\begin{aligned}
\frac{\partial(g \circ f)}{\partial x^{i}}(p) & =D_{i}\left(g \circ f \circ x^{-1}\right)(x(p))=D_{i}\left(g \circ y^{-1} \circ y \circ f \circ x^{-1}\right)(x(p)) \\
& =\sum_{j=1}^{m} D_{j}(g \circ y)(y(f(p))) D_{i}\left(\left(y \circ f \circ x^{-1}\right)^{j}\right)(x(p)) \\
& =\sum_{j=1}^{m} D_{j}(g \circ y)(y(f(p))) D_{i}\left(y^{j} \circ f \circ x^{-1}\right)(x(p)) \\
& =\sum_{j=1}^{m} \frac{\partial g}{\partial y^{j}}(f(p)) \frac{\partial\left(y_{j} \circ f\right)}{\partial x^{i}}(p) .
\end{aligned}
$$

2. We have for $g: N \longrightarrow \mathbb{R}$ that:

$$
f_{*}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)(g)=\frac{\partial(g \circ f)}{\partial x^{i}}(p)=\sum_{j=1}^{m} \frac{\partial\left(y_{j} \circ f\right)}{\partial x^{i}}(p) \frac{\partial g}{\partial y^{j}}(f(p))
$$

hence:

$$
f_{*}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\sum_{j=1}^{m} \frac{\partial\left(y_{j} \circ f\right)}{\partial x^{i}}(p) \frac{\partial}{\partial y^{j}}\right|_{f(p)}
$$

3. Using [1, Lemma 6.12 (p. 137)] and the differential expansion we have that:

$$
\left(f^{*} d y^{j}\right)(p)=d\left(y^{j} \circ f\right)(p)=\sum_{i=1}^{n} \frac{\partial\left(y^{j} \circ f\right)}{\partial x^{i}}(p) d x^{i}(p)
$$

4. We express the following in terms of $d x^{i}$ for $i=1, \ldots, n$. First, recall that the pullback is a linear function. Moreover, it behaves multiplicatively with respect to finitely many tensor products since for two vectors $u, v \in T_{p} M$:

$$
\begin{aligned}
f^{*}\left(d y^{i} \otimes d y^{j}\right)(u, v) & =d y^{i} \otimes d y^{j}\left(f_{*} u, f_{*} v\right)=d y^{i}\left(f_{*} u\right) d y^{j}\left(f_{*} v\right) \\
& =f^{*}\left(d y^{i}\right)(u) f^{*}\left(d y^{j}\right)(v)=f^{*}\left(d y^{i}\right) \otimes f^{*}\left(d y^{j}\right)(u, v)
\end{aligned}
$$

so $f^{*}\left(d y^{i} \otimes d y^{j}\right)=f^{*}\left(d y^{i}\right) \otimes f^{*}\left(d y^{j}\right)$. Thus applying the above (always at p):

$$
\begin{aligned}
& f *\left(\sum_{j_{1}, \ldots, j_{k}} a_{j_{1}} \cdots a_{j_{k}} d y^{j_{1}} \otimes \cdots \otimes d y^{j_{k}}\right)=\sum_{j_{1}, \ldots, j_{k}} a_{j_{1}} \cdots a_{j_{k}} f^{*}\left(d y^{j_{1}} \otimes \cdots \otimes d y^{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}} a_{j_{1}} \cdots a_{j_{k}} f^{*}\left(d y^{j_{1}}\right) \otimes \cdots \otimes f^{*}\left(d y^{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}} a_{j_{1}} \cdots a_{j_{k}}\left(\sum_{i=1}^{n} \frac{\partial\left(y^{j_{1}} \circ f\right)}{\partial x^{i}}(p) d x^{i}\right) \otimes \cdots \otimes\left(\sum_{i=1}^{n} \frac{\partial\left(y^{j_{k}} \circ f\right)}{\partial x^{i}}(p) d x^{i}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}} a_{j_{1}} \cdots a_{j_{k}}\left(\sum_{i_{i}, \ldots, i_{n}} \frac{\partial\left(y^{j_{i_{1}}} \circ f\right)}{\partial x^{i_{1}}}(p) \cdots \frac{\partial\left(y^{j_{i_{n}}} \circ f\right)}{\partial x^{i_{n}}}(p) d x^{i_{1}} \otimes \cdots \otimes d x^{i_{n}}\right)
\end{aligned}
$$

where we sum over $i_{1}, \ldots, i_{n} \in\{i, \ldots, n\}$.

Exercise 4

Show that there exists a Riemannian metric on every manifold M (let n be its dimension). That is, we want a positive definite inner product g that sends two smooth vector fields X, Y to $g_{p}(X(p), Y(p))$ in a smooth way over M. The metric conditions means that for each $p \in M$ we want to have $g_{p}: T_{p} M \times T_{p} M \longrightarrow \mathbb{R}$ such that:

1. $g_{(p)}(u, v)=g_{(p)}(v, u)$ for every $u, v \in T_{p} M$,
2. $g_{(p)}(u, u) \geq 0$ for every $u \in T_{p} M$ and $g_{(p)}(u, u)=0$ if and only if $u=0$.

First, we notice that both the smooth conditions and the metric conditions are local, hence we can work with charts $\left\{\left(x_{i}, U_{i}\right)\right\}_{i \in I}$ of M. The complete hypothesis of M being a manifold yield that we can choose $\left\{U_{i}\right\}_{i \in I}$ to be a countable and locally finite cover of M, hence we have partitions of unity, that is, for $i \in I$ functions $\rho_{i}: M \longrightarrow[0,1]$ with the support of ρ_{i} inside U_{i} : we have $\sum_{i \in I} \rho_{i}(p)=1$ (in particular for every $p \in M$ the above sum is finite because the cover is locally finite)

Now, let $p \in M$ and $u, v \in T_{p} M$, let $\left(x_{i}, U_{i}\right)$ be a chart covering p, we have that $\left(x_{i}\right)_{*}: T_{p} M \longrightarrow T_{x(p)} \mathbb{R}^{n} \cong \mathbb{R}^{n}$. We define $g_{i}(u, v)=\left\langle\left(x_{i}\right)_{*}(u),\left(x_{i}\right)_{*}(v)\right\rangle_{\mathbb{R}^{n}}$ where $\langle\cdot, \cdot\rangle_{\mathbb{R}^{n}}$ is the usual inner product in \mathbb{R}^{n}. The compatibility of the charts means that if $\left(x_{j}, U_{j}\right)$ also covers p, then $g_{j}(u, v)=g_{i}(u, v)$ and this is well defined. Now, setting $g_{i}(u, v)=0$ for $u, v \in T_{q} M$ with $q \notin U_{i}$ we obtain that g_{i} is defined for every $p \in M$. Now, the function $\rho_{i} g_{i}: T_{p} M \times T_{p} M \longrightarrow \mathbb{R}$ is well defined for every $p \in M$, it is smooth since ρ_{i} smoothens the behaviour of g_{i} in its support so that the transition to the value 0 is smooth, it is symmetric and bilinear as a consequence of $\langle\cdot, \cdot\rangle_{\mathbb{R}^{n}}$ being symmetric and bilinear, and finally it is positive definite when $p \in M$ belongs to the support of ρ_{i} by definition.

Define $g=\sum_{i \in I} \rho_{i} g_{i}$, where at each $p \in M$ we have a finite sum. Since a sum is smooth, and each of the summands is smooth, we obtain that g is a smooth function. In fact, since all the components are symmetric and bilinear, g inherits this properties and is also symmetric and bilinear. We only have to check that g is positive definite: for every $p \in M$ we have that since $\left\{\rho_{i}\right\}_{i \in I}$ are partitions of unity, there is a ρ_{j} with $\rho_{j}(p) \neq 0$, thus $p \in U_{j}$. Now for $u \in T_{p} M$ non zero, we have that $g(u, u)=\sum_{i \in I} \rho_{i}(p) g_{i}(u, u) \geq$ $\rho_{j}(p) g_{j}(u, u)>0$, and clearly $g_{i}(0,0)=0$ for all $i \in I$. Hence g is positive definite, and hence it is a Riemannian metric.

Exercise 5

Let $C, S \subset \mathbb{R}^{n} 2$ be respectively the unit circle and the boundary of the square of side 1 centered at the origin. We want to show that there is a homeomorphism $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ with $F(C)=S$, but there is no diffeomorphism with this property.

We will use the fact that in \mathbb{R}^{2} the euclidean norm $\|\cdot\|_{2}$ and the infinite norm $\|\cdot\|_{\infty}$ are equivalent (this follows from relatively basic topology since in a finite dimensional vector space all norms are equivalent). Hence both as vector spaces and as topological spaces we have that $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)=\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$, where this is not only an isomorphism, but a real equality. Consider now:

$$
\begin{array}{rllccccc}
F:\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) & \longrightarrow & \left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right) & F^{-1} & :\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right) & \longrightarrow & \left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \\
x & \longmapsto & \frac{\|x\|_{2}}{\|x\|_{\infty}} x & & x & \longmapsto & \frac{\|x\|_{\infty}}{\|x\|_{2}} x \\
0 & \longmapsto & 0 & & 0 & \longmapsto & 0
\end{array}
$$

we have that F is continuous because the norms are continuous (as a consequence of the norms being equivalent), and for the same reason F^{-1} is continuous, and clearly they are inverses of each other. Now, by construction of F, we have that balls in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$, which are the usual open discs of radius $r>0$, are sent to balls in $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$, which are squares of side of length $r>0$. This follows immediately from the way norms behave, but if this is not convincing enough, we can simply notice that given any point $x \in C$, it has $\|x\|_{2}=1$ thus $\|F(x)\|_{\infty}=\|x\|_{2}=1$ and $F(x) \in S$. Moreover, this is not only injective since we can divide by the non-zero norms, but also surjective since using F^{-1} we can find for any $y \in S$ a point $x=F^{-1}(y) \in C$ such that $F(x)=y$. Hence $F(C)=S$ by a homeomorphism.

To prove that there is no diffeomorphism with this property, we assume there is one, say F, and proceed by contradiction. Note that since C has a structure of smooth manifold, we can restrict $\left.F\right|_{C}$ and expect the image to be a smooth manifold. However, in the usual coordinates that we are using here, S cannot have a structure of smooth manifold: since C is a 1-dimensional manifold and $F \mid C$ is a diffeomorphism, S would have to be a 1-dimensional manifold; consider then the tangent space $T S=\coprod_{(\phi, U) \in \mathcal{A}(S)} T \phi(U) / \sim$ where $(x, v) \in T \phi(U)$ is equivalent to $(y, w) \in T \psi(V)$ if and only if $x=\phi\left(\psi^{-1}(y)\right)$ and $v=D\left(\phi \circ \psi^{-1}\right)_{y}(w)$. Note that (ϕ, U) are the usual charts in \mathbb{R}^{2} because they are inherited from the usual charts from C by the diffeomorphism F. In particular at the point $(1,1) \in S$ this means that the composition $\phi \circ \psi^{-1}$ is not smooth. Hence $T_{(1,1)} S$ is a single point since any $(x, v),(y, w)$ with $x=(1,1)=y$ (the interpretation of $x=\phi\left(\psi^{-1}(y)\right)$ in $(1,1))$ and everything is related to a single point. This is 0 -dimensional, a contradiction with the fact that $T_{F(x)} S$ should be 1-dimensional for every $x \in C$, and implying that $T S$ not only is not well defined, but since this definition is what we used to construct it, $T S$ actually does not exist.

The contradiction comes from the fact that we supposed we had $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ diffeomorphism with $F(C)=S$, hence such a diffeomorphism cannot exist, as desired.

References

[1] J. M. Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2003.

