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Exercise 1

Let (x, U) and (y, V ) be two charts on a manifold M , p ∈ U ∩ V and thus y∗ ◦ (x∗)
−1 :

x(U ∩ V )× Rn −→ y(U ∩ V )× Rn is a smooth diffeomorphism. We want to show that
its Jacobian matrix is:

D(y∗ ◦ (x∗)
−1) =

(
Dj(y

i
∗ ◦ (x∗)

−1) 0
X Dj(y

i
∗ ◦ (x∗)

−1)

)
.

For this, we will reason in each of the three relevant n × n square matrices that form
D(y∗ ◦ (x∗)

−1):

1. Top left: first, notice how (y∗ ◦(x∗)
−1)i = yi∗ ◦(x∗)

−1 since the only possible way to
take components is when we land in Rn×Rn. Hence since y∗ = π−1 ◦y ◦π we have
that yi∗ = yi for the first i = 1, . . . , n components, thus (y∗ ◦ (x∗)

−1)i = yi ◦ x−1
since we are simply restricting us to the function from x(U ∩V ) to y(U ∩V ). Thus
the corresponding matrix is simply the Jacobian of y◦x−1, that is, (Dj(y

i◦x−1))i,j .

2. Top right: this is the i × j submatrix with i < n and j > n, which shows the
change in y(U ∩ V ) given by changes in Rn maintaining x(U ∩ V ) fixed. Notice
how for a point (u, v) ∈ x(U ∩ V ) × Rn, changes in v the second n-tuple, that is,
changes in Rn, do not affect the base point in TM to which it corresponds: we
are moving on the fiber, but the base point is determined by u hence remains the
same. This means that the first n-tuple of y(U ∩ V )×Rn, which controls the base
points, is not affected by changes of v. This, by definition, means that the partial
derivatives with respect to the second n-tuple are zero thus, as we desired, the
matrix has all entries zero: ∂((y∗ ◦ (x∗)

−1)i)/∂Ij = 0 for i, j = 1, . . . , n (with the
notation of {Ii}ni=1 for the coordinates of Rn in x(U ∩ V )× Rn).

3. Bottom right: this part of the matrix is the restriction of y∗ ◦ (x∗)
−1 to the second

n-tuple, that is, a function from Rn to Rn. Hence what we have is an isomorphism
from writing Rn in the coordinates given by x to writing Rn in the coordinates
given by y, thus the Jacobian is just the corresponding change of basis matrix,
that is, (Dj(y

i ◦ x−1))i,j .
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Exercise 2

Let M a manifold, p ∈ M (say of dimension n). We denote Ip = {f ∈ C∞(M ;R) :
f(p) = 0} thus:

I2p =


k∑
j=1

fjgj : fj , gj ∈ Ip for i = 1, . . . , k

 .

1. The map i : Ip −→ T ∗pM defined by i(f)(v) = v(f) for v ∈ TpM is linear. For this,
we just have to verify (abusing that a derivation is R-linear) that for f, g ∈ Ip and
r ∈ R:

(a) i(f + g)(v) = v(f + g) = v(f) + v(g) = i(f)(v) + i(g)(v),

(b) i(rf)(v) = v(rf) = rv(f) = ri(f)(v).

2. Show that ker(i) = I2p , thus i : Ip/I2p −→ T ∗pM is an injection. We prove both
inclusions:

⊆) Let f ∈ ker(i), that is, 0 = i(f)(v) = v(f) for every v ∈ TpM . In particular,
applying this to ∂/∂xi, . . . , ∂/∂xn a basis of TpM , we obtain that to ∂f(p)/∂xi = 0
for every i = 1, . . . , n. Consider now [1, Theorem A.58 (p.587)] the multivariate
Taylor expansion of f near p given by a local chart (x, U), that is, for q ∈ U we
have:

f(q) = f(p) +

n∑
i=1

∂f

∂xi
(p)(xi(q)− xi(p)) +

n∑
i=1

gi(q)(xi(q)− xi(p))

=

n∑
i=1

gi(q)(xi(q)− xi(p)),

with g1, . . . , gn ∈ C∞(M ;R) with gi(p) = 0 for every i = 1, . . . , n. Now, clearly
gi ∈ Ip and (x(q)− x(p)) ∈ Ip, thus f ∈ I2p as desired.

⊇) Let f ∈ I2p , that is, f =
∑k

j=1 fjgj with fj , gj ∈ Ip for j = 1, . . . , k. Now for
any v ∈ TpM :

i(f)(v) = v(f) = v

 k∑
j=1

fjgj

 =
k∑
j=1

v(fjgj) =
k∑
j=1

v(fj)gj(p) + fj(p)v(gj) = 0

since fj(p) = 0 = gj(p), thus f ∈ ker(i).

3. Show that i : Ip/I2p −→ T ∗pM is an isomorphism. Given the above, we know that i
is a morphism and an injection, hence we just have to prove that it is a surjection.
For this, given a linear function w : TpM −→ R, it is enough to find an element
f ∈ Ip such that i(f)(v) = w(v) for every v ∈ TpM (since then taking the class f
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of f in Ip/I2p we find that i(f) = w). Since for a chart (x, U) with p ∈ U we have
that ∂/∂xi, . . . , ∂/∂xn is a basis of TpM , we have (and impose) that:

wi = w

(
∂

∂xi

)
=
∂f(p)

∂xi
for i = 1, . . . , n

thus defining f(q) =
∑n

i=1w
i(xi(q)− xi(p)) for q ∈ U we obtain that f(p) = 0

and f is a smooth function with derivatives ∂f(p)/∂xi = wi for i = 1, . . . , n. Thus
f ∈ Ip and i(f) = w as desired.
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Exercise 3

Let f : Mn −→ Nm be smooth and let (x, U), (y, V ) be coordinate systems around p,
f(p) respectively.

1. For g : N −→ R we have that:

∂(g ◦ f)

∂xi
(p) = Di(g ◦ f ◦ x−1)(x(p)) = Di(g ◦ y−1 ◦ y ◦ f ◦ x−1)(x(p))

=
m∑
j=1

Dj(g ◦ y)(y(f(p)))Di((y ◦ f ◦ x−1)j)(x(p))

=
m∑
j=1

Dj(g ◦ y)(y(f(p)))Di(y
j ◦ f ◦ x−1)(x(p))

=

m∑
j=1

∂g

∂yj
(f(p))

∂(yj ◦ f)

∂xi
(p).

2. We have for g : N −→ R that:

f∗

(
∂

∂xi
|p
)

(g) =
∂(g ◦ f)

∂xi
(p) =

m∑
j=1

∂(yj ◦ f)

∂xi
(p)

∂g

∂yj
(f(p))

hence:

f∗

(
∂

∂xi
|p
)

=
m∑
j=1

∂(yj ◦ f)

∂xi
(p)

∂

∂yj
|f(p).

3. Using [1, Lemma 6.12 (p. 137)] and the differential expansion we have that:

(f∗dyj)(p) = d(yj ◦ f)(p) =
n∑
i=1

∂(yj ◦ f)

∂xi
(p)dxi(p).

4. We express the following in terms of dxi for i = 1, . . . , n. First, recall that the
pullback is a linear function. Moreover, it behaves multiplicatively with respect to
finitely many tensor products since for two vectors u, v ∈ TpM :

f∗(dyi ⊗ dyj)(u, v) = dyi ⊗ dyj(f∗u, f∗v) = dyi(f∗u)dyj(f∗v)

= f∗(dyi)(u)f∗(dyj)(v) = f∗(dyi)⊗ f∗(dyj)(u, v),
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so f∗(dyi ⊗ dyj) = f∗(dyi)⊗ f∗(dyj). Thus applying the above (always at p):

f ∗

 ∑
j1,...,jk

aj1 · · · ajkdy
j1 ⊗ · · · ⊗ dyjk

 =
∑

j1,...,jk

aj1 · · · ajkf
∗(dyj1 ⊗ · · · ⊗ dyjk)

=
∑

j1,...,jk

aj1 · · · ajkf
∗(dyj1)⊗ · · · ⊗ f∗(dyjk)

=
∑

j1,...,jk

aj1 · · · ajk

(
n∑
i=1

∂(yj1 ◦ f)

∂xi
(p)dxi

)
⊗ · · · ⊗

(
n∑
i=1

∂(yjk ◦ f)

∂xi
(p)dxi

)

=
∑

j1,...,jk

aj1 · · · ajk

 ∑
ii,...,in

∂(yji1 ◦ f)

∂xi1
(p) · · · ∂(yjin ◦ f)

∂xin
(p)dxi1 ⊗ · · · ⊗ dxin


where we sum over i1, . . . , in ∈ {i, . . . , n}.
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Exercise 4

Show that there exists a Riemannian metric on every manifoldM (let n be its dimension).
That is, we want a positive definite inner product g that sends two smooth vector fields
X, Y to gp(X(p), Y (p)) in a smooth way over M . The metric conditions means that for
each p ∈M we want to have gp : TpM × TpM −→ R such that:

1. g(p)(u, v) = g(p)(v, u) for every u, v ∈ TpM ,

2. g(p)(u, u) ≥ 0 for every u ∈ TpM and g(p)(u, u) = 0 if and only if u = 0.

First, we notice that both the smooth conditions and the metric conditions are local,
hence we can work with charts {(xi, Ui)}i∈I of M . The complete hypothesis of M being
a manifold yield that we can choose {Ui}i∈I to be a countable and locally finite cover of
M , hence we have partitions of unity, that is, for i ∈ I functions ρi : M −→ [0, 1] with
the support of ρi inside Ui: we have

∑
i∈I ρi(p) = 1 (in particular for every p ∈ M the

above sum is finite because the cover is locally finite)
Now, let p ∈ M and u, v ∈ TpM , let (xi, Ui) be a chart covering p, we have that

(xi)∗ : TpM −→ Tx(p)Rn ∼= Rn. We define gi(u, v) = 〈(xi)∗(u), (xi)∗(v)〉Rn where 〈·, ·〉Rn

is the usual inner product in Rn. The compatibility of the charts means that if (xj , Uj)
also covers p, then gj(u, v) = gi(u, v) and this is well defined. Now, setting gi(u, v) = 0
for u, v ∈ TqM with q /∈ Ui we obtain that gi is defined for every p ∈ M . Now, the
function ρigi : TpM × TpM −→ R is well defined for every p ∈ M , it is smooth since
ρi smoothens the behaviour of gi in its support so that the transition to the value 0 is
smooth, it is symmetric and bilinear as a consequence of 〈·, ·〉Rn being symmetric and
bilinear, and finally it is positive definite when p ∈ M belongs to the support of ρi by
definition.

Define g =
∑

i∈I ρigi, where at each p ∈ M we have a finite sum. Since a sum is
smooth, and each of the summands is smooth, we obtain that g is a smooth function. In
fact, since all the components are symmetric and bilinear, g inherits this properties and
is also symmetric and bilinear. We only have to check that g is positive definite: for every
p ∈ M we have that since {ρi}i∈I are partitions of unity, there is a ρj with ρj(p) 6= 0,
thus p ∈ Uj . Now for u ∈ TpM non zero, we have that g(u, u) =

∑
i∈I ρi(p)gi(u, u) ≥

ρj(p)gj(u, u) > 0, and clearly gi(0, 0) = 0 for all i ∈ I. Hence g is positive definite, and
hence it is a Riemannian metric.
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Exercise 5

Let C, S ⊂ Rn2 be respectively the unit circle and the boundary of the square of side 1
centered at the origin. We want to show that there is a homeomorphism F : R2 −→ R2

with F (C) = S, but there is no diffeomorphism with this property.
We will use the fact that in R2 the euclidean norm || · ||2 and the infinite norm || · ||∞

are equivalent (this follows from relatively basic topology since in a finite dimensional
vector space all norms are equivalent). Hence both as vector spaces and as topological
spaces we have that (R2, || · ||2) = (R2, || · ||∞), where this is not only an isomorphism,
but a real equality. Consider now:

F : (R2, || · ||2) −→ (R2, || · ||∞)

x 7−→ ||x||2
||x||∞x

0 7−→ 0

,

F−1 : (R2, || · ||∞) −→ (R2, || · ||2)
x 7−→ ||x||∞

||x||2 x

0 7−→ 0

we have that F is continuous because the norms are continuous (as a consequence of the
norms being equivalent), and for the same reason F−1 is continuous, and clearly they
are inverses of each other. Now, by construction of F , we have that balls in (R2, || · ||2),
which are the usual open discs of radius r > 0, are sent to balls in (R2, || · ||∞), which are
squares of side of length r > 0. This follows immediately from the way norms behave,
but if this is not convincing enough, we can simply notice that given any point x ∈ C,
it has ||x||2 = 1 thus ||F (x)||∞ = ||x||2 = 1 and F (x) ∈ S. Moreover, this is not only
injective since we can divide by the non-zero norms, but also surjective since using F−1

we can find for any y ∈ S a point x = F−1(y) ∈ C such that F (x) = y. Hence F (C) = S
by a homeomorphism.

To prove that there is no diffeomorphism with this property, we assume there is one,
say F , and proceed by contradiction. Note that since C has a structure of smooth mani-
fold, we can restrict F |C and expect the image to be a smooth manifold. However, in the
usual coordinates that we are using here, S cannot have a structure of smooth manifold:
since C is a 1-dimensional manifold and F |C is a diffeomorphism, S would have to be
a 1-dimensional manifold; consider then the tangent space TS =

∐
(φ,U)∈A(S) Tφ(U)/ ∼

where (x, v) ∈ Tφ(U) is equivalent to (y, w) ∈ Tψ(V ) if and only if x = φ(ψ−1(y)) and
v = D(φ◦ψ−1)y(w). Note that (φ,U) are the usual charts in R2 because they are inher-
ited from the usual charts from C by the diffeomorphism F . In particular at the point
(1, 1) ∈ S this means that the composition φ◦ψ−1 is not smooth. Hence T(1,1)S is a single
point since any (x, v), (y, w) with x = (1, 1) = y (the interpretation of x = φ(ψ−1(y)) in
(1, 1)) and everything is related to a single point. This is 0-dimensional, a contradiction
with the fact that TF (x)S should be 1-dimensional for every x ∈ C, and implying that
TS not only is not well defined, but since this definition is what we used to construct it,
TS actually does not exist.

The contradiction comes from the fact that we supposed we had F : R2 −→ R2

diffeomorphism with F (C) = S, hence such a diffeomorphism cannot exist, as desired.
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